Unconditionally Secure Signature Schemes Revisited

  • Colleen M. Swanson
  • Douglas R. Stinson
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6673)


Unconditionally secure signature (USS) schemes provide the ability to electronically sign documents without the reliance on computational assumptions needed in traditional digital signatures. Unlike digital signatures, USS schemes require both different signing and different verification algorithms for each user in the system. Thus, any viable security definition for a USS scheme must carefully treat the subject of what constitutes a valid signature. That is, it is important to distinguish between signatures that are created using a user’s signing algorithm and signatures that may satisfy one or more user verification algorithms. Moreover, given that each verifier has his own distinct verification algorithm, a USS scheme must necessarily handle the event of a disagreement. In this paper, we present a new security model for USS schemes that incorporates these notions, as well as give a formal treatment of dispute resolution and the trust assumptions required. We provide formal definitions of non-repudiation and transferability in the context of dispute resolution, and give sufficient conditions for a USS scheme to satisfy these properties. Finally, we present the results of an analysis of Hanaoka et al.’s construction in our security model.


Signature Scheme Dispute Resolution Security Model Authentication Code Signature Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brickell, E., Stinson, D.: Authentication Codes with Multiple Arbiters. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 51–55. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  2. 2.
    Chaum, D., Roijakkers, S.: Unconditionally Secure Digital Signatures. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 206–214. Springer, Heidelberg (1991)Google Scholar
  3. 3.
    Desmedt, Y., Yung, M.: Arbitrated Unconditionally Secure Authentication Can Be Unconditionally Protected against Arbiter’s Attacks. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 177–188. Springer, Heidelberg (1991)Google Scholar
  4. 4.
    Desmedt, Y., Frankl, Y., Yung, M.: Multi-receiver / Multi-sender Network Security: Efficient Authenticated Multicast / Feedback. In: INFOCOM 1992, pp. 2045–2054 (1992)Google Scholar
  5. 5.
    Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Unconditionally Secure Digital Signature Schemes Admitting Transferability. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 130–142. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. 6.
    Hanaoka, G., Shikata, J., Zheng, Y., Imai, H.: Efficient and Unconditionally Secure Digital Signatures and a Security Analysis of a Multireceiver Authentication Code. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 64–79. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Hara, Y., Seito, T., Shikata, J., Matsumoto, T.: Unconditionally Secure Blind Signatures. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 23–43. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Johansson, T.: On the Construction of Perfect Authentication Codes that Permit Arbitration. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 343–354. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  9. 9.
    Johansson, T.: Further Results on Asymmetric Authentication Schemes. Information and Computation 151, 100–133 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Safavi–Naini, R., McAven, L., Yung, M.: General Group Authentication Codes and Their Relation to “Unconditionally-Secure Signatures”. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 231–247. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Safavi-Naini, R., Wang, H.: Broadcast Authentication in Group Communication. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 399–412. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Shikata, J., Hanaoka, G., Zheng, Y., Imai, H.: Security Notions for Unconditionally Secure Signature Schemes. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 434–449. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Simmons, G.: Message Authentication with Arbitration of Transmitter/Receiver Disputes. In: Price, W.L., Chaum, D. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 151–165. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  14. 14.
    Simmons, G.: A Cartesian Product Construction for Unconditionally Secure Authentication Codes that Permit Arbitration. J. Cryptology 2, 77–104 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Swanson, C., Stinson, D.: Unconditionally Secure Signature Schemes Revisited. Full version to appear in IACR eprint archive

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Colleen M. Swanson
    • 1
  • Douglas R. Stinson
    • 1
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooWaterlooCanada

Personalised recommendations