LR(0) Conjunctive Grammars and Deterministic Synchronized Alternating Pushdown Automata

  • Tamar Aizikowitz
  • Michael Kaminski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6651)


In this paper we introduce a sub-family of synchronized alternating pushdown automata, Deterministic Synchronized Alternating Pushdown Automata, and a sub-family of conjunctive grammars, LR(0) Conjunctive Grammars. We prove that deterministic SAPDA and LR(0) conjunctive grammars have the same recognition/generation power, analogously to the classical equivalence between acceptance by empty stack of deterministic PDA and LR(0) grammars. These models form the theoretical basis for efficient, linear, parsing of a rich sub-family of conjunctive languages, which properly includes all the boolean combinations of context-free LR(0) languages.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizikowitz, T., Kaminski, M.: Conjunctive grammars and alternating pushdown automata. In: Hodges, W., de Queiroz, R. (eds.) Logic, Language, Information and Computation. LNCS (LNAI), vol. 5110, pp. 30–41. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Aizikowitz, T.: Synchronized Alternating Pushdown Automata. PhD thesis, Technion – Israel Institute of Technology (2010),
  3. 3.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. Journal of the ACM 28(1), 114–133 (1981)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Higginbotham, J.: English is not a context-free language. Linguistic Inquiry 15, 119–126 (1984)Google Scholar
  5. 5.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  6. 6.
    Knuth, D.E.: On the translation of languages from left to right. Information and Control 8, 607–639 (1965)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown and stack automata. SIAM Journal on Computing 13(1), 135–155 (1984)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Langendoen, T.D., Postal, P.M.: English and the class of context-free languages. Computational Linguistics 10(3-4), 177–181 (1984)Google Scholar
  9. 9.
    Okhotin, A.: Conjunctive grammars. Journal of Automata, Languages and Combinatorics 6(4), 519–535 (2001)MathSciNetMATHGoogle Scholar
  10. 10.
    Okhotin, A.: Top-down parsing of conjunctive languages. Grammars 5(1), 21–40 (2002)CrossRefMATHGoogle Scholar
  11. 11.
    Okhotin, A.: LR parsing for conjunctive grammars. Grammars 5(2), 21–40 (2002)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Okhotin, A.: A recognition and parsing algorithm for arbitrary conjunctive grammars. Theoretical Computer Science 302, 81–124 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Okhotin, A.: Fast parsing for boolean grammars: A generalization of valiant”s algorithm. In: Gao, Y., Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 340–351. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Tomita, M.: Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems. Kluwer Academic Publishers, Norwell (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tamar Aizikowitz
    • 1
  • Michael Kaminski
    • 1
  1. 1.Department of Computer ScienceTechnion – Israel Institute of TechnologyHaifaIsrael

Personalised recommendations