Compressed Membership in Automata with Compressed Labels

  • Markus Lohrey
  • Christian Mathissen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6651)


The algorithmic problem of whether a compressed string is accepted by a (nondeterministic) finite state automaton with compressed transition labels is investigated. For string compression, straight-line programs (SLPs), i.e., context-free grammars that generate exactly one string, are used. Two algorithms for this problem are presented. The first one works in polynomial time, if all transition labels are nonperiodic strings (or more generally, the word length divided by the period is bounded polynomially in the input size). This answers a question of Plandowski and Rytter. The second (nondeterministic) algorithm is an NP-algorithm under the assumption that for each transition label the period is bounded polynomially in the input size. This generalizes the NP upper bound for the case of a unary alphabet, shown by Plandowski and Rytter.


Polynomial Time Word Problem Arithmetic Progression Atomic Transition Input Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Book, R.V., Otto, F.: String–Rewriting Systems. Springer, Heidelberg (1993)CrossRefMATHGoogle Scholar
  2. 2.
    Choffrut, C., Karhumäki, J.: Combinatorics on words. In: Rozenberg, G., Salomaa, A. (eds.) Word, Language, Grammar. Handbook of Formal Languages, vol. 1 ch. 6, pp. 329–438. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for Lempel-Ziv encoding (extended abstract). In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  4. 4.
    Hagenah, C.: Gleichungen mit regulären Randbedingungen über freien Gruppen. PhD thesis, University of Stuttgart, Institut für Informatik (2000)Google Scholar
  5. 5.
    Lifshits, Y.: Processing compressed texts: A tractability border. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Lohrey, M.: Compressed membership problems for regular expressions and hierarchical automata. Internat. J. Found. Comput. Sci. 21(5), 817–841 (2010)MathSciNetMATHGoogle Scholar
  8. 8.
    Lohrey, M., Schleimer, S.: Efficient computation in groups via compression. In: Diekert, V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 249–258. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Lohrey, M.: Word problems and membership problems on compressed words. SIAM J. Comput. 35(5), 1210–1240 (2006)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Lothaire, M.: Combinatorics on Words. Encyclopedia of Mathematics and its Applications, vol. 17. Addison-Wesley, Reading (1983)MATHGoogle Scholar
  11. 11.
    Macdonald, J.: Compressed words and automorphisms in fully residually free groups. Internat. J. Algebra Comput. 20(3), 343–355 (2010)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  13. 13.
    Plandowski, W., Rytter, W.: Complexity of language recognition problems for compressed words. In: Jewels are Forever, Contributions on Theoretical Computer Science in Honor of Arto Salomaa, pp. 262–272. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  14. 14.
    Schleimer, S.: Polynomial-time word problems. Comment. Math. Helv. 83(4), 741–765 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Transactions on Information Theory 23(3), 337–343 (1977)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Markus Lohrey
    • 1
  • Christian Mathissen
    • 1
  1. 1.Institut für InformatikUniversität LeipzigGermany

Personalised recommendations