Advertisement

Computing Vertex-Surjective Homomorphisms to Partially Reflexive Trees

  • Petr A. Golovach
  • Daniël Paulusma
  • Jian Song
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6651)

Abstract

A homomorphism from a graph G to a graph H is a vertex mapping f:V G  → V H such that f(u) and f(v) form an edge in H whenever u and v form an edge in G. The H-Coloring problem is to test whether a graph G allows a homomorphism to a given graph H. A well-known result of Hell and Nešetřil determines the computational complexity of this problem for any fixed graph H. We study a natural variant of this problem, namely the Surjective H -Coloring problem, which is to test whether a graph G allows a homomorphism to a graph H that is (vertex-)surjective. We classify the computational complexity of this problem when H is any fixed partially reflexive tree. Thus we identify the first class of target graphs H for which the computational complexity of Surjective H -Coloring can be determined. For the polynomial-time solvable cases, we show a number of parameterized complexity results, especially on nowhere dense graph classes.

Keywords

Bipartite Graph Connected Graph Adjacent Vertex Graph Class Surjective Homomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, J., Huang, X., Kanj, I.A., Xia, G.: Strong computational lower bounds via parameterized complexity. J. Comput. Syst. Sci. 72, 1346–1367 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dantas, S., de Figueiredo, C.M., Gravier, S., Klein, S.: Finding H-partitions efficiently. RAIRO - Theoretical Informatics and Applications 39(1), 133–144 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dantas, S., Maffray, F., Silva, A.: 2K2-partition of some classes of graphs. Discrete Applied Mathematics (to appear)Google Scholar
  4. 4.
    Dawar, A., Kreutzer, S.: Parameterized complexity of first-order logic, Electronic Colloquium on Computational Complexity, Report No. 131 (2009)Google Scholar
  5. 5.
    Diestel, R.: Graph theory. Graduate Texts in Mathematics, 3rd edn., vol. 173. Springer, BerlinGoogle Scholar
  6. 6.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefzbMATHGoogle Scholar
  7. 7.
    Dvorak, Z., Král’, D., Thomas, R.: Deciding first-order properties for sparse graphs. Technical report, Charles University, Prague (2009)Google Scholar
  8. 8.
    Feder, T., Hell, P.: List homomorphisms to reflexive graphs. J. Comb. Theory, Ser. B 72, 236–250 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Feder, T., Hell, P., Huang, J.: Bi-arc graphs and the complexity of list homomorphisms. Journal of Graph Theory 42, 61–80 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Feder, T., Hell, P., Jonsson, P., Krokhin, A., Nordh, G.: Retractions to pseudoforests. SIAM Journal on Discrete Mathematics 24, 101–112 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: a study through datalog and group theory. SIAM Journal on Computing 28, 57–104 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Fiala, J., Kratochvíl, J.: Locally constrained graph homomorphisms – structure, complexity, and applications. Computer Science Review 2, 97–111 (2008)CrossRefzbMATHGoogle Scholar
  13. 13.
    Fiala, J., Paulusma, D.: A complete complexity classification of the role assignment problem. Theoretical Computer Science 349, 67–81 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hell, P., Nešetřil, J.: On the complexity of H-colouring. Journal of Combinatorial Theory, Series B 48, 92–110 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, Oxford (2004)CrossRefzbMATHGoogle Scholar
  16. 16.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63, 512–530 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fleischner, H., Mujuni, E., Paulusma, D., Szeider, S.: Covering graphs with few complete bipartite subgraphs. Theoret. Comput. Sci. 410, 2045–2053 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Nešetřil, J., Ossona de Mendez, P.: On nowhere dense graphs. Technical report, Charles University, Prague (2008)Google Scholar
  19. 19.
    Patrignani, M., Pizzonia, M.: The Complexity of the Matching-Cut Problem. In: Brandstädt, W.A., Le, V.B. (eds.) WG 2001. LNCS, vol. 2204, pp. 284–295. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Teixeira, R.B., Dantas, S., de Figueiredo, C.M.H.: The external constraint 4 nonempty part sandwich problem. Discrete Applied Mathematics (to appear)Google Scholar
  21. 21.
    Vikas, N.: Computational complexity of compaction to reflexive cycles. SIAM Journal on Computing 32, 253–280 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Vikas, N.: Compaction, Retraction, and Constraint Satisfaction. SIAM Journal on Computing 33, 761–782 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Vikas, N.: A complete and equal computational complexity classification of compaction and retraction to all graphs with at most four vertices and some general results. J. Comput. Syst. Sci. 71, 406–439 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Petr A. Golovach
    • 1
  • Daniël Paulusma
    • 1
  • Jian Song
    • 1
  1. 1.School of Engineering and Computing SciencesDurham University, Science LaboratoriesDurhamUK

Personalised recommendations