Numerical Front Propagation Using Kinematical Conservation Laws

  • K. R. ArunEmail author
  • M. Lukáčová-Medvi’ová
  • P. Prasad
Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 4)


We use the newly formulated three-dimensional (3-D) kinematical conservation laws (KCL) to study the propagation of a nonlinear wavefront in a polytropic gas in a uniform state at rest. The 3-D KCL forms an under-determined system of six conservation laws with three involutive constraints, to which we add the energy conservation equation of a weakly nonlinear ray theory. The resulting system of seven conservation laws is only weakly hyperbolic and therefore poses a real challenge in the numerical approximation. We implement a central finite volume scheme with a constrained transport technique for the numerical solution of the system of conservation laws. The results of a numerical experiment is presented, which reveals some interesting geometrical features of a nonlinear wavefront.


kinematical conservation laws kink weakly nonlinear ray theory wavefront polytropic gas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



K. R. A. wishes to thank the Alexander von Humboldt Foundation for a postdoctoral fellowship. P. P. is supported by the Department of Atomic Energy, Government of India, under Raja-Ramanna Fellowship Scheme.


  1. 1.
    Arun, K.R.: A numerical scheme for three-dimensional front propagation and control of Jordan mode. Tech. rep., Department of Mathematics, Indian Institute of Science, Bangalore (2010)Google Scholar
  2. 2.
    Arun, K.R., Lukáčová-Medvi’ová, M., Prasad, P., Raghurama Rao, S.V.: An application of 3-D kinematical conservation laws: propagation of a three dimensional wavefront. SIAM. J. Appl. Math. 70, 2604–2626 (2010)Google Scholar
  3. 3.
    Arun, K.R., Prasad, P.: 3-D kinematical conservation laws (KCL): evolution of a surface in \({\mathbb{R}}^{3}\)-in particular propagation of a nonlinear wavefront. Wave Motion 46, 293–311 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Jiang, G.S., Shu, C.W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160, 241–282 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Prasad, P.: Ray theories for hyperbolic waves, kinematical conservation laws (KCL) and applications. Indian J. Pure Appl. Math. 38, 467–490 (2007)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Ryu, D., Miniati, F., Jones, T.W., Frank, A.: A divergence-free upwind code for multidimensional magnetohydrodynamic flow. Astrophys. J. 509, 244–255 (1998)CrossRefGoogle Scholar
  8. 8.
    Shu, C.W.: Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Comput. 9, 1073–1084 (1988)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • K. R. Arun
    • 1
    Email author
  • M. Lukáčová-Medvi’ová
    • 2
  • P. Prasad
    • 3
  1. 1.Institut für Geometrie und Praktische MathematikRWTH AachenAachenGermany
  2. 2.Institut für MathematikJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Department of MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations