A Well-Balanced Scheme For Two-Fluid Flows In Variable Cross-Section ducts

Conference paper
Part of the Springer Proceedings in Mathematics book series (PROM, volume 4)

Abstract

We propose a finite volume scheme for computing two-fluid flows in variable cross-section ducts. Our scheme satisfies a well-balanced property. It is based on the VFRoe approach. The VFRoe variables are the Riemann invariants of the stationnary wave and the cross-section. In order to avoid spurious pressure oscillations, the well-balanced approach is coupled with an ALE (Arbitrary Lagrangian Eulerian) technique at the interface and a random sampling remap.

Keywords

Well-balanced scheme Glimm scheme Lagrange projection two-fluid flows 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bachmann, P. Helluy, H. Mathis, S. Mueller. Random sampling remap for compressible two-phase flows. Preprint HALhttp://hal.archives-ouvertes.fr/hal-00546919/fr/
  2. 2.
    T. Barberon, P. Helluy, S. Rouy. Practical computation of axisymmetrical multifluid flows. Int. J. Finite Vol. 1 (2004), no. 1, 34 pp.http://ijfv.org
  3. 3.
    C. Chalons, F. Coquel. Computing material fronts with a Lagrange-Projection approach. HYP2010 Proc. http://hal.archives-ouvertes.fr/hal-00548938/fr/
  4. 4.
    J.-M. Greenberg, A.Y., Leroux. A well balanced scheme for the numerical processing of source terms in hyperbolic equations”, SIAM J. Num. Anal., vol. 33 (1), pp. 1–16, 1996.CrossRefGoogle Scholar
  5. 5.
    P. Helluy, J.-M. Hérard, H. Mathis. A Well- Balanced Approximate Riemann Solver for Variable Cross- Section Compressible Flows. AIAA-2009-3540. 19th AIAA Computational Fluid Dynamics. June 2009.Google Scholar
  6. 6.
    S. Karni. Multicomponent flow calculations by a consistent primitive algorithm. J. Comput. Phys. 112 (1994), no. 1, 31–43.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    D. Kroner, M.-D. Thanh. Numerical solution to compressible flows in a nozzle with variable cross-section”, SIAM J. Numer. Anal., vol. 43(2), pp. 796–824, 2006.Google Scholar
  8. 8.
    R. Saurel, R. Abgrall. A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21 (1999), no. 3, 1115âĂŞ1145.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.IRMAUniversité de StrasbourgStrasbourgFrance

Personalised recommendations