Customizable Route Planning

  • Daniel Delling
  • Andrew V. Goldberg
  • Thomas Pajor
  • Renato F. Werneck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)


We present an algorithm to compute shortest paths on continental road networks with arbitrary metrics (cost functions). The approach supports turn costs, enables real-time queries, and can incorporate a new metric in a few seconds—fast enough to support real-time traffic updates and personalized optimization functions. The amount of metric-specific data is a small fraction of the graph itself, which allows us to maintain several metrics in memory simultaneously.


Road Network Road Segment Query Time Boundary Vertex Overlay Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abraham, I., Delling, D., Goldberg, A.V., Werneck, R.F.: A Hub-Based Labeling Algorithm for Shortest Paths in Road Networks. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 230–241. Springer, Heidelberg (2011)Google Scholar
  2. 2.
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In Transit to Constant Shortest-Path Queries in Road Networks. In: ALENEX 2007, pp. 46–59. SIAM, Philadelphia (2007)Google Scholar
  3. 3.
    Bauer, R., Delling, D.: SHARC: Fast and Robust Unidirectional Routing. ACM JEA 14(2.4), 1–29 (2009)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM JEA 15(2.3), 1–31 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Delling, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: Graph Partitioning with Natural Cuts. To appear in IPDPS 2011. IEEE, Los Alamitos (2011)Google Scholar
  6. 6.
    Delling, D., Holzer, M., Müller, K., Schulz, F., Wagner, D.: High-Performance Multi-Level Routing. In: Demetrescu, C., et al. [9], pp. 73–92Google Scholar
  7. 7.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Delling, D., Wagner, D.: Pareto Paths with SHARC. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 125–136. Springer, Heidelberg (2009)Google Scholar
  9. 9.
    Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): The Shortest Path Problem: Ninth DIMACS Implementation Challenge. DIMACS Book, vol. 74. AMS, Providence (2009)zbMATHGoogle Scholar
  10. 10.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Geisberger, R., Kobitzsch, M., Sanders, P.: Route Planning with Flexible Objective Functions. In: ALENEX 2010, pp. 124–137. SIAM, Philadelphia (2010)Google Scholar
  12. 12.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Geisberger, R., Vetter, C.: Efficient Routing in Road Networks with Turn Costs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 100–111. Springer, Heidelberg (2011)Google Scholar
  14. 14.
    Goldberg, A.V., Harrelson, C.: Computing the Shortest Path: A* Search Meets Graph Theory. In: SODA 2005, pp. 156–165 (2005)Google Scholar
  15. 15.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Shortest Path Algorithms with Preprocessing. In: Demetrescu, C., et al. (eds.) [9], pp. 93–139.Google Scholar
  16. 16.
    Hilger, M., Köhler, E., Möhring, R.H., Schilling, H.: Fast Point-to-Point Shortest Path Computations with Arc-Flags. In: Demetrescu, C., et al. (eds.) [9], pp. 41–72.Google Scholar
  17. 17.
    Holzer, M., Schulz, F., Wagner, D.: Engineering Multi-Level Overlay Graphs for Shortest-Path Queries. ACM JEA 13(2.5), 1–26 (2008)Google Scholar
  18. 18.
    Huang, Y.-W., Jing, N., Rundensteiner, E.A.: Effective Graph Clustering for Path Queries in Digital Maps. In: CIKM 1996, pp. 215–222. ACM Press, New York (1996)Google Scholar
  19. 19.
    Jung, S., Pramanik, S.: An Efficient Path Computation Model for Hierarchically Structured Topographical Road Maps. IEEE TKDE 14(5), 1029–1046 (2002)Google Scholar
  20. 20.
    Karypis, G., Kumar, G.: A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM J. on Scientific Comp. 20(1), 359–392 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Maue, J., Sanders, P., Matijevic, D.: Goal-Directed Shortest-Path Queries Using Precomputed Cluster Distances. ACM JEA 14:3.2:1–3.2:27 (2009)Google Scholar
  22. 22.
    Muller, L.F., Zachariasen, M.: Fast and Compact Oracles for Approximate Distances in Planar Graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 657–668. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  23. 23.
    Rice, M., Tsotras, V.J.: Graph Indexing of Road Networks for Shortest Path Queries with Label Restrictions. In: Proc. VLDB Endowment, vol. 4(2) (2010)Google Scholar
  24. 24.
    Schulz, F., Wagner, D., Weihe, K.: Dijkstra’s Algorithm On-Line: An Empirical Case Study from Public Railroad Transport. ACM JEA 5(12), 1–23 (2000)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Schulz, F., Wagner, D., Zaroliagis, C.: Using Multi-Level Graphs for Timetable Information in Railway Systems. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Delling
    • 1
  • Andrew V. Goldberg
    • 1
  • Thomas Pajor
    • 2
  • Renato F. Werneck
    • 1
  1. 1.Microsoft Research Silicon ValleyUSA
  2. 2.Karlsruhe Institute of TechnologyGermany

Personalised recommendations