An Experimental Evaluation of Incremental and Hierarchical k-Median Algorithms

  • Chandrashekhar Nagarajan
  • David P. Williamson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6630)


In this paper, we consider different incremental and hierarchical k-median algorithms with provable performance guarantees and compare their running times and quality of output solutions on different benchmark k-median datasets. We determine that the quality of solutions output by these algorithms for all the datasets is much better than their performance guarantees suggest. Since some of the incremental k-median algorithms require approximate solutions for the k-median problem, we also compare some of the existing k-median algorithms’ running times and quality of solutions obtained on these datasets.


Local Search Greedy Algorithm Facility Location Competitive Ratio Local Search Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alp, O., Erkut, E., Drezner, D.: An efficient genetic algorithm for the p-median problem. Annals of Operations Research 122, 21–42 (22) (2003)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for k-median and facility location problems. SIAM Journal on Computing 33, 544–562 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beasley, J.E.: A note on solving large p-median problems. European Journal of Operational Research 21, 270–273 (1985)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Charikar, M., Guha, S., Tardos, E., Shmoys, D.B.: A constant-factor approximation algorithm for the k-median problem (extended abstract). In: Proceedings of the 31th Annual ACM Symposium on Theory of Computing, pp. 1–10 (1999)Google Scholar
  5. 5.
    Chrobak, M., Kenyon, C., Noga, J., Young, N.E.: Incremental medians via online bidding. Algorithmica 50, 455–478 (2008)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Galvao, R.D., ReVelle, C.: A Lagrangean heuristic for the maximal covering location problem. European Journal of Operational Research 88(1), 114–123 (1996)CrossRefMATHGoogle Scholar
  7. 7.
    Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual-fitting with factor-revealing LP. Journal of the ACM 50, 795–824 (2003)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Kariv, O., Hakimi, S.L.: An algorithm approach to network location problems ii. the p-medians. SIAM Journal of Applied Mathematics 37, 539–560 (1979)CrossRefMATHGoogle Scholar
  9. 9.
    Lin, G., Nagarajan, C., Rajaraman, R., Williamson, D.P.: A general approach for incremental approximation and hierarchical clustering. SIAM Journal on Computing 39, 3633–3669 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM Journal on Computing 32, 816–832 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Plaxton, C.G.: Approximation algorithms for hierarchical location problems. Journal of Computer and System Sciences 72, 425–443 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Chandrashekhar Nagarajan
    • 1
  • David P. Williamson
    • 2
  1. 1.Yahoo! Inc.SunnyvaleUSA
  2. 2.Cornell UniversityIthacaUSA

Personalised recommendations