Advertisement

GraphITA 2011 pp 129-136 | Cite as

A Chemists Method for Making Pure Clean Graphene

  • S. Malik
  • A. Vijayaraghavan
  • R. Erni
  • K. Ariga
  • I. Khalakhan
  • J. P. Hill
Conference paper
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Even before Geim and Novoselov’s Nobel Prize in Physics 2010 "for groundbreaking experiments regarding the two-dimensional material graphene". the interest of physicists in graphene was enormous compared to that of chemists. This probably results from the absence of a well-established large scale method to produce graphene. Therefore, the most important role chemists can play is the establishment of an inexpensive and simple wet-chemical method for making graphene. Herein, we describe an intercalation method to make clean graphene that has good electrical properties. The new method is based on an earlier procedure to make expanded graphite. Our method leads to the production of graphene.

Keywords

Reduce Graphene Oxide Graphite Oxide Expanded Graphite Highly Oriented Pyrolytic Graphite Graphene Flake 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

A.V. acknowledges funding by the Initiative and Networking Fund of the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF). This work was partly supported by World Premier International Research Center Initiative (WPI Initiative) from MEXT, Japan and we thank Dr. Taketoshi Fujita and Dr. Yoshihiro Nemoto for technical assistance. Part of this work was performed at NCEM, which is supported by the Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

References

  1. 1.
    Brodie, B.C.: On the atomic weight of graphite. Phil. Trans. 149, 249–259 (1859)CrossRefGoogle Scholar
  2. 2.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. science 306, 666–669 (2004)CrossRefGoogle Scholar
  3. 3.
    Boehm, H.P., Clauss, A., Fischer, G., Hofmann, U.: Surface properties of extremely thin graphite Lamellae. In: Proceedings of the 5th Conference on Carbon, pp. 73–80, Pergamon Press, (1962)Google Scholar
  4. 4.
    Boehm, H.P., Clauss, A., Fischer, G., Hofmann, U.: Z. Naturforschg. Dünnste Kohlenstoff-Folien. 17, 150–153 (1962)Google Scholar
  5. 5.
    Boehm, H.P.: Graphene-how a laboratory curiosity suddenly became extremely interesting. Angew. Chem. Int. Ed. 49, 9332–9335 (2010)CrossRefGoogle Scholar
  6. 6.
    McKay, S.F.: Expansion of annealed pyrolytic graphite. J. App. Phys. 35, 1992–1993 (1964)CrossRefGoogle Scholar
  7. 7.
    Hummer, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  8. 8.
    Lerf, A., He, H., Forster, M., Klinowski, J.: Structure of graphite oxide revisited. J. Phys. Chem. B. 102, 4477–4482 (1998)CrossRefGoogle Scholar
  9. 9.
    Mkhoyan, K.A., Countryman, A.W., Silcox, J., Stewart, D.A., Eda, G., Mattevi, C., Miller, S., Chhowalla, M.: Atomic and electronic structure of graphene-oxide. Nano. Lett. 9, 1058–1063 (2009)Google Scholar
  10. 10.
    Li, D., Müller, M.B., Gilje, S., Kaner, R.B., Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotech. 3, 101–105 (2008)CrossRefGoogle Scholar
  11. 11.
    Stankovich, S., Piner, R.D., Chen, X., Wu, N., Nguyen, S.B.T., Ruoff, R.S.: Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate) . J. Mater. Chem. 16, 155–158 (2006)CrossRefGoogle Scholar
  12. 12.
    Gómez-Navarro, C., Meyer, J.C., Sundaram, R.S., Chuvilin, A., Kurasch, S., Burghard, M., Kern, K., Kaiser, U.: Atomic structure of reduced graphene oxide. Nano. Lett. 10, 1144 (2010)CrossRefGoogle Scholar
  13. 13.
    Shioyama, H.J.: Cleavage of graphite to graphene. J. Mater. Sci. Lett. 20, 499–500 (2001)CrossRefGoogle Scholar
  14. 14.
    Viculis, L.M., Mack, J.J., Kaner, R.B.: Chemical route to carbon nanoscrolls. Science 299, 1361 (2003)CrossRefGoogle Scholar
  15. 15.
    Ebert, L.B.: Intercalation compounds of graphite. Annu. Rev. Mater. Sci. 6, 181–211 (1976)CrossRefGoogle Scholar
  16. 16.
    Weiss, A.: Ein Geheimnis des chinesischen Porzellans. Angew. Chem. 75, 755–762 (1963)CrossRefGoogle Scholar
  17. 17.
    Böhm, H.P., Stumpp, E.: Citation errors concerning the first report on exfoliated graphite. Carbon 45, 1381–1383 (2007)CrossRefGoogle Scholar
  18. 18.
    Inagaki, M., Tashiro, R., Washino, Y., Toyoda, M.: Exfoliation process of graphite via intercalation compounds with sulfuric acid. J. Phys. Chem. Solids 65, 133–137 (2004)CrossRefGoogle Scholar
  19. 19.
    Dresselhaus, M.S., Dresselhaus, G.: Intercalation of compounds of graphite. Adv. Phys. 51, 1–186 (2002)CrossRefGoogle Scholar
  20. 20.
    Malik, S., Vijayaraghavan, A., Erni, R., Ariga, K., Khalakhan, I., Hill, J.P.: High purity graphenes prepared by a chemical intercalation method. Nanoscale 2, 2139–2143 (2010)CrossRefGoogle Scholar
  21. 21.
    Meyer, J.C., Kisielowski, C., Erni, R., Rossell, M.D., Crommie, M.F., Zettl, A.: Direct imaging of lattice atoms and topological defects in graphene membranes. Nano. Lett. 8, 3582 (2008)CrossRefGoogle Scholar
  22. 22.
    Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., Saito, R.: Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano. Lett. 10, 751 (2010)CrossRefGoogle Scholar
  23. 23.
    Vijayaraghavan, A., Sciascia, C., Dehm, S., Lombardo, A., Bonetti, A., Ferrari, A.C., Krupke, R.: Dielectrophoretic assembly of high-density arrays of individual graphene devices for rapid screening. ACS Nano. 3, 7–1729 (2009)CrossRefGoogle Scholar
  24. 24.
    Vijayaraghavan, A., Blatt, S., Weissenberger, D., Oron-Carl, M., Hennrich, F., Gerthsen, D., Hahn, H., Krupke, R.: Ultra-large-scale directed assembly of single-walled carbon nanotube devices. Nano. Lett. 7,6, 1556–1560 (2007)CrossRefGoogle Scholar
  25. 25.
    Gass, M.H., Bangert, U., Bleloch, A.L., Wang, P., Nair, R.R., Geim, A.K.: Free-standing graphene at atomic resolution. Nat. Nanotech. 3, 676 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • S. Malik
    • 1
  • A. Vijayaraghavan
    • 1
    • 2
  • R. Erni
    • 3
  • K. Ariga
    • 4
  • I. Khalakhan
    • 4
    • 5
  • J. P. Hill
    • 4
  1. 1.Karlsruhe Institute of Technology (KIT)Institute of NanotechnologyKarlsruheGermany
  2. 2.School of Computer ScienceUniversity of ManchesterManchesterUK
  3. 3.Swiss Federal Laboratories for Materials Testing and Research (EMPA)Electron Microscopy CentreDübendorfSwitzerland
  4. 4.National Institute for Materials Science (NIMS)WPI-Centre for Materials NanoarchitectonicsTsukubaJapan
  5. 5.Faculty of Mathematics and PhysicsDepartment of Surface and Plasma SciencePraha 8Czech Republic

Personalised recommendations