Graphene Edge Structures: Folding, Scrolling, Tubing, Rippling and Twisting

Conference paper
Part of the Carbon Nanostructures book series (CARBON)

Abstract

Conventional three-dimensional crystal lattices are terminated by surfaces, which can demonstrate complex rebonding and rehybridisation, localised strain and dislocation formation. Two-dimensional crystal lattices, of which graphene is the archetype, are terminated by lines. The additional available dimension at such interfaces opens up a range of new topological interface possibilities. We show that graphene sheet edges can adopt a range of topological distortions depending on their nature. Rehybridisation, local bond reordering, chemical functionalisation with bulky, charged, or multi-functional groups can lead to edge buckling to relieve strain, folding, rolling and even tube formation. We discuss the topological possibilities at a two-dimensional graphene edge, and under what circumstances we expect different edge topologies to occur. Density functional calculations are used to explore in more depth different graphene edge types.

Keywords

High Resolution Transmission Electron Microscopy Graphene Plane High Resolution Transmission Electron Microscopy Graphene Layer Graphene Nanoribbon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work has been carried out within the NANOSIM-GRAPHENE project \(\hbox{n}^{\circ}\)ANR-09-NANO-016-01 funded by the French National Agency (ANR) in the frame of its 2009 programme in Nanosciences, Nanotechnologies and Nanosystems (P3N2009). We thank the COST Project MP0901 “NanoTP” for support.

References

  1. 1.
    Ivanovskaya, V.V., Zobelli, A., Wagner, P., Heggie, M., Briddon, P.R., Rayson, M.J., Ewels, C.P.: Phys. Rev. Lett. 107, 065502 (2011)CrossRefGoogle Scholar
  2. 2.
    Klein, D.: Chem. Phys. Lett. 217(3), 261 (1994)CrossRefGoogle Scholar
  3. 3.
    Koskinen, P., Malola, S., Häkkinen, H.: Phys. Rev. Lett. 101(11), 115502 (2008)CrossRefGoogle Scholar
  4. 4.
    Liu, Z., Suenaga, K., Harris, P.J.F., Iijima, S.: Phys. Rev. Lett. 102(1), 015501 (2009)CrossRefGoogle Scholar
  5. 5.
    Warner, J., Rümmeli, M.H., Bachmatiuk, A., Büchner, B.: Nanotechnology 21(32), 325702 (2010)CrossRefGoogle Scholar
  6. 6.
    Warner, J.H., Schäffel, F., Rümmeli, M.H., Büchner, B.: Chem. Mat. 21(12), 2418 (2009)CrossRefGoogle Scholar
  7. 7.
    Huang, J.Y., Ding, F., Yakobson, B.I., Lu, P., Qi, L., Li, J.: Proc. Natl. Acad. Sci. USA 106(25), 10103 (2009)CrossRefGoogle Scholar
  8. 8.
    Girit, C., Meyer, J., Erni, R., Rossell, M., Kisielowski, C., Yang, L., Park, C., Crommie, M., Cohen, M., Louie, S. et al.: Science 323(5922), 1705 (2009)CrossRefGoogle Scholar
  9. 9.
    Gass, M., Bangert, U., Bleloch, A., Wang, P., Nair, R., Geim, A.: Nat. Nanotechnol. 3(11), 676 (2008)CrossRefGoogle Scholar
  10. 10.
    Meyer, J., Geim, A., Katsnelson, M., Novoselov, K., Booth, T., Roth, S.: Nature 446(7131), 60 (2007)CrossRefGoogle Scholar
  11. 11.
    Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Obergfell, D., Roth, S., Girit, C., Zettl, A.: Solid State Commun. 143(1-2), 101 (2007)CrossRefGoogle Scholar
  12. 12.
    Rotkin, S., Gogotsi, Y.: Mat. Res. Innov. 5(5), 191 (2002)CrossRefGoogle Scholar
  13. 13.
    Kim, K., Lee, Z., Malone, B., Chan, K.T., Alemán, B., Regan, W., Gannett, W., Crommie, M.F., Cohen, M.L., Zettl, A.: Phys. Rev. B 83, 245433 (2011)CrossRefGoogle Scholar
  14. 14.
    Cranford, S., Sen, D., Buehler, M.: Appl.Phys. Lett. 95, 123121 (2009)CrossRefGoogle Scholar
  15. 15.
    Roy, H., Kallinger, C., Sattler, K.: Surf. Sci. 407(1-3), 1 (1998)CrossRefGoogle Scholar
  16. 16.
    Feng, J., Qi, L., Huang, J., Li, J.: Phys. Rev. B 80(16), 165407 (2009)CrossRefGoogle Scholar
  17. 17.
    Zhang, J., Xiao, J., Meng, X., Monroe, C., Huang, Y., Zuo, J.: Phys. Rev. Lett. 104(16), 166805 (2010)CrossRefGoogle Scholar
  18. 18.
    Mpourmpakis, G., Tylianakis, E., Froudakis, G.: Nano Lett. 7(7), 1893 (2007)CrossRefGoogle Scholar
  19. 19.
    Suarez-Martinez, I., Savini, G., Zobelli, A., Heggie, M.: J. Nanosci. Nanotechnol. 7(10), 3417 (2007)CrossRefGoogle Scholar
  20. 20.
    Xu, Z., Buehler, M.: ACS Nano 4, 2126 (2010)Google Scholar
  21. 21.
    Martins, B., Galvao, D.: Nanotechnology 21, 075710 (2010)CrossRefGoogle Scholar
  22. 22.
    Braga, S., Coluci, V., Legoas, S., Giro, R., Galvão, D., Baughman, R.: Nano Lett. 4(5), 881 (2004)CrossRefGoogle Scholar
  23. 23.
    Fogler, M., Neto, A., Guinea, F.: Phys. Rev. B 81, 161408 (2010)CrossRefGoogle Scholar
  24. 24.
    Chen, Y., Lu, J., Gao, Z.: J. Phys. Chem. C 111(4), 1625 (2007)CrossRefGoogle Scholar
  25. 25.
    Pan, H., Feng, Y., Lin, J.: Phys. Rev. B 72(8), 085415 (2005)CrossRefGoogle Scholar
  26. 26.
    Wassmann, T., Seitsonen, A., Saitta, A., Lazzeri, M., Mauri, F.: Phys. Rev. Lett. 101(9), 96402 (2008)CrossRefGoogle Scholar
  27. 27.
    Wagner, P., Ewels, C.P., Ivanovskaya, V.V., Briddon, P.R., Pateau, A., Humbert, B.: Phys. Rev. B 84(13), 134110 (2011)CrossRefGoogle Scholar
  28. 28.
    Fasolino, A., Los, J.H., Katsnelson, M.I.: Nat. Mater. 6(11), 858 (2007)CrossRefGoogle Scholar
  29. 29.
    Thompson-Flagg, R.C., Moura, M.J.B., Marder, M.: EPL Europhys. Lett. 85(4), 46002 (2009)CrossRefGoogle Scholar
  30. 30.
    Cervantes-Sodi, F., Csányi, G., Piscanec, S., Ferrari, A.C.: Phys. Rev. B 77(16), 165427 (2008)CrossRefGoogle Scholar
  31. 31.
    Gunlycke, D., Li, J., Mintmire, J.W., White, C.T.: Nano Lett. 10(9), 3638 (2010)CrossRefGoogle Scholar
  32. 32.
    Briddon, P., Jones, R.: .. Phys. Status Solidi B 217(1), 131 (2000)CrossRefGoogle Scholar
  33. 33.
    Rayson, M.J., Briddon, P.R.: Phys. Rev. B 80(20), 205104 (2009)CrossRefGoogle Scholar
  34. 34.
    Rayson, M.: Comput. Phys. Commun. 181(6), 1051 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut des Matériaux Jean Rouxel (IMN)Université de NantesNantesFrance
  2. 2.Laboratoire de Physique des SolidesUniversité Paris-SudOrsayFrance
  3. 3.Nanochemistry Research InstituteCurtin University of TechnologyPerthAustralia

Personalised recommendations