Integration of a New Emission-Efficiency Ratio into Industrial Decision-Making Processes – A Case Study on the Textile Chain

  • Grit WaltherEmail author
  • Britta Engel
  • Thomas Spengler


Because of increasing CO2-emissions and resulting climate change, ratios for emission accounting (and thus reduction) have gained importance both in research and practice. Indicators such as the Cumulative Emission Intensity (CEI) are able to account for all emissions along a supply chain. However, in order to improve such ratios over time, it is not sufficient for stakeholders to calculate and publish them once a year. Instead, these ratios have to be implemented into the decision-making processes of companies and entire supply chains. Against this background, a concept for implementing emission accounting indicators into decision-making processes within supply chains has been developed. On the one hand, the aggregated indicator is applied top-down for the benchmarking of sites or suppliers using efficiency analysis methods. On the other hand, the ratio is calculated bottom-up based on production planning models. Thereby, no weighting of environmental and economic criteria is applied, but all Pareto efficient solutions are calculated. The decision-making levels are connected using the Pareto optimal solutions. Thus, the decision maker is free to make decisions about trade-offs between the economic and environmental criteria. The concept has been applied to the textile supply chain.


CEI corporate decision-making emission efficiency supply chain trade-offs 



The authors would like to thank the German BMBF (Ministry of Education and Research) for supporting the research project “Cumulative Emission Intensities for Assessment of Climate Protection Measures along Supply Chains – EINBLIK” (Promotional Reference 01LS05083). We would also like to thank our project partners: Institute of Applied Sciences at the University of Applied Sciences Pforzheim, Systain Consulting GmbH (Hamburg), Volkswagen AG (Wolfsburg) for their cooperation, conjoint discussions, and the provision of information and data.


  1. Allen K (2002) Messung ökologischer Effizienz mittels Data Envelopment Analysis. DVU, WiesbadenGoogle Scholar
  2. Angell LC, Klassen RD (1999) Integrating environmental issues into the mainstream: an agenda for research in operations management. J Oper Manage 17:575–598CrossRefGoogle Scholar
  3. Austin D, Rosinski N, Sauer A, le Duc C (2004) Changing Drivers: The Impact of Climate Change on Competitiveness and Value Creation in the Automotive Industry. Washington, DC: World Resources Institute and Sustainable Asset ManagementGoogle Scholar
  4. Charnes A, Cooper WW, Rhodes E (1978) Measuring the efficiency of decision making units. Eur J Oper Res 2:429–444CrossRefGoogle Scholar
  5. CLI (2007) Carbon disclosure project report 2007, Global FT500. Accessed 10 Oct 2007
  6. Clift R (2003) Metrics for supply chain sustainability. Clean Technol Environ Policy 3/4:240–247CrossRefGoogle Scholar
  7. CO2-Handel (2007) Homepage of emissions trading and climate protection. Accessed 10 Oct 2007
  8. Cooper WW, Park KS, Pastor JST (1999) RAM: a range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA. J Prod Anal 11:5–42CrossRefGoogle Scholar
  9. Ehrgott M, Gandibleux X (2007) Bound sets for biobjective combinatorial optimization problems. Comput Oper Res 34:2674–2694CrossRefGoogle Scholar
  10. Figge F, Hahn T (2004) Sustainable value added: Ein neues Maß des Nachhaltigkeitsbeitrags von Unternehmen am Beispiel der Henkel KGaA. Vierteljahreshefte zur Wirtschaftsforschung 73:126–141CrossRefGoogle Scholar
  11. Figge F, Hahn T (2005) The cost of sustainable capital and the creation of sustainable value by companies. J Ind Ecol 9(4):47–58CrossRefGoogle Scholar
  12. Figge F, Hahn T, Daverio C, Persson M, Brunczel B, Wilhelm A, Mauritz C (2006) Sustainable Value of European Industry – A Value-Based Analysis of the Enviromental Performance of European Manufacturing Companies, ADVANCE-Project: Forres/Berlin,
  13. Huppes G, Ishikawa M (2005) A framework for quantified eco-efficiency. J Ind Ecol 9(4):25–41CrossRefGoogle Scholar
  14. IPCC (2007) Climate change 2007: summary of policymakers. IPCC Secretariat, GenevaGoogle Scholar
  15. Klein R, Scholl A (2004) Planung und Entscheidung. München, VahlenGoogle Scholar
  16. Krikke H, Bloemhof-Ruwaard J, van Wassenhove LN (2003) Concurrent product and closed-loop supply chain design with an application to refrigerators. Int J Prod Res 41(16):3689–3719CrossRefGoogle Scholar
  17. Letmathe P, Balakrishnan N (2005) Environmental considerations on the optimal product mix. Eur J Oper Res 167(2):398–412CrossRefGoogle Scholar
  18. Quariguasi JFN, Bloemhof-Ruwaard JM, van Numen JAEE, van Heck HWGM (2006) Designing and evaluating sustainable logistics networks. Int J Prod Econ 111(2):195–208Google Scholar
  19. Quariguasi JFN, Walther G, Bloemhof-Ruwaard JM, van Numen JAEE, Spengler T (2007) A methodology for assessing eco-efficiency in logistics networks. Eur J Oper Res 193(3):670–682Google Scholar
  20. Schmidt M, Schwegler R (2005) Wertschöpfungsbasierte Erfolgsmessung unternehmensbezogener Klimaschutz-Aktivitäten. Institute for Applied Sciences, University of Applied Sciences Pforzheim (ed) Pforzheimer ForschungsberichteGoogle Scholar
  21. Schmidt M, Schwegler R (2008) A recursive ecological indicator system for the supply chain of a company. J Cleaner Prod 16(15):1658–1664CrossRefGoogle Scholar
  22. Steuer RE, Piercy CA (2005) A regression study of the number of efficient extreme points in multiple objective linear programming. Eur J Oper Res 162(2):484–496CrossRefGoogle Scholar
  23. Systain Consulting GmbH (2007) Personal information about the textile supply chainGoogle Scholar
  24. Umweltbundesamt (2007) Nationale Trendtabellen für die deutsche Berichterstattung atmosphärischer Emissionen seit 1990. Accessed 27 Oct 2007
  25. Umwelt-Online (2007) Decision 2007/589/EG of the EG Commission by 18.07.2007. Accessed 23 Oct 2007
  26. Zangemeister C (1976) Nutzwertanalyse in der Systemtechnik – Eine Methodik zur multidimensionalen Bewertung und Auswahl von Projektalternativen, Dissertation Technische Universität Berlin 1970, 4th edn. Wittemann, MünchenGoogle Scholar
  27. Zimmermann H-J, Gutsche L (1991) Multi-Criteria Analyse, Einführung die Theorie der Entscheidungen bei Mehrfachzielsetzungen. Springer, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Schumpeter School of Business and EconomicsBergische Universität WuppertalWuppertalGermany
  2. 2.Braunschweig University of TechnologyBraunschweigGermany

Personalised recommendations