Lessons Learnt from the Cryptanalysis of Chaos-Based Ciphers

  • Gonzalo Alvarez
  • José María Amigó
  • David Arroyo
  • Shujun Li
Part of the Studies in Computational Intelligence book series (SCI, volume 354)

Introduction

The idea of using chaotic transformations in cryptography is explicit in the foundational papers of Shannon on secrecy systems (e.g., [96]). Although the word “chaos” was not minted till the 1970s [71], Shannon clearly refers to this very concept when he proposes the construction of secure ciphers by means of measure-preserving, mixing maps which depend ‘sensitively’ on their parameters. The implementation of Shannon’s intuitions had to wait till the development of Chaos Theory in the 1980s. Indeed, it was around 1990 when the first chaos-based ciphers were proposed (e.g., [78], [46]). Moreover, in 1990 chaos synchronization [91] entered the scene and shortly thereafter, the first applications to secure communications followed [56, 37]. The idea is remarkably simple: mask the message with a chaotic signal and use synchronization at the receiver to filter out the chaotic signal. The realization though had to overcome the desynchronization induced by the message itself. After this initial stage, the number of proposals which exploited the properties of chaotic maps for cryptographical purposes, grew in a spectacular way.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Addabbo, T., Alioto, M., Fort, A., Pasini, A., Rocchi, S., Vignoli, V.: A class of maximum-period nonlinear congruential generators derived from the reńyi chaotic map. IEEE Transactions on Circuits and Systems–I: Regular Papers 54(4), 816–828 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alvarez, G.: Security problems with a chaos-based deniable authentication scheme. Chaos, Solitons & Fractals 26(1), 7–11 (2005)MATHCrossRefGoogle Scholar
  3. 3.
    Alvarez, G., Arroyo, D., Nunez, J.: Application of Gray code to the cryptanalysis of chaotic cryptosystems. In: 3rd International IEEE Scientific Conference on Physics and Control (PhysCon 2007), September 3-7, Potsdam, Germany (2007), http://lib.physcon.ru/?item=1358
  4. 4.
    Alvarez, G., Li, S.: Estimating short-time period to break different types of chaoitc modulation based secure communications. arxiv:nlin.CD/0406039 (2004), http://arxiv.org/abs/nlin/0406039
  5. 5.
    Alvarez, G., Li, S.: Breaking an encryption scheme based on chaotic baker map. Physics Letters A 352(1-2), 78–82 (2006)MATHCrossRefGoogle Scholar
  6. 6.
    Alvarez, G., Li, S.: Some basic cryptographic requirements for chaos-based cryptosystems. International Journal of Bifurcation and Chaos 16(8), 2129–2151 (2006)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Alvarez, G., Li, S., Hernandez, L.: Analysis of security problems in a medical image encryption system. Computers in Biology and Medicine 37(3), 424–427 (2007)CrossRefGoogle Scholar
  8. 8.
    Alvarez, G., Li, S., Montoya, F., Romera, M., Pastor, G.: Breaking projective chaos synchronization secure communication using filtering and generalized synchronization. Chaos, Solitons & Fractals 24(3), 775–783 (2005)MATHCrossRefGoogle Scholar
  9. 9.
    Alvarez, G., Montoya, F., Pastor, G.: Cryptanalysis of a discrete chaotic cryptosystem using external key. Physics Letters A 319, 334–339 (2003)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of a chaotic encryption system. Physics Letters A 276, 191–196 (2000)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of an ergodic chaotic cipher. Physics Letters A 311, 172–179 (2003)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Breaking parameter modulated chaotic secure communication system. Chaos, Solitons & Fractals 21(4), 793–797 (2004)CrossRefGoogle Scholar
  13. 13.
    Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Cryptanalysis of dynamic look-up table based chaotic cryptosystems. Physics Letters A 326, 211–218 (2004)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Alvarez, G., Montoya, F., Romera, M., Pastor, G.: Keystream cryptanalysis of a chaotic cryptographic method. Computer Physics Communications 156, 205–207 (2004)CrossRefGoogle Scholar
  15. 15.
    Amigó, J., Kocarev, L., Szczepanski, J.: Theory and practice of chaotic cryptography. Physics Letters A 366(3), 211–216 (2007)Google Scholar
  16. 16.
    Amigó, J.M., Szczepanski, J.: Approximations of dynamical systems and their applications to cryptography. International Journal of Bifurcation and Chaos 13, 1937–1948 (2003)MATHCrossRefGoogle Scholar
  17. 17.
    Amigó, J.M.: Chaos-Based Cryptography. In: Kocarev, L., Galias, Z., Lian, S. (eds.) Intelligent Computing Based on Chaos. Studies in Computational Intelligence, vol. 184, pp. 291–313. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Amigó, J.M., Szczepanski, J., Kocarev, L.: A chaos-based approach to the design of cryptographically secure substitutions. Physics Letters A 343, 55–60 (2005)MATHCrossRefGoogle Scholar
  19. 19.
    Argenti, F., Benzi, S., Re, E.D., Genesio, R.: Stream cipher system based on chaotic maps. In: Proceedings of SPIE Mathematics and Applications of Data/Image Coding, Compression, and Encryption III, vol. 4122, pp. 10–17. SPIE (2001)Google Scholar
  20. 20.
    Ariffin, M., Noorani, M.: Modified Baptista type chaotic cryptosystem via matrix secret key. Physics Letters A 372, 5427–5430 (2008)Google Scholar
  21. 21.
    Arroyo, D.: Framework for the analysis and design of encryption strategies based on discrete-time chaotic dynamical systems. Ph.D. thesis, ETSIA of the Polytechnic University of Madrid, Madrid, Spain (2009), http://digital.csic.es/handle/10261/15668
  22. 22.
    Arroyo, D., Alvarez, G., Amigó, J.M.: Estimation of the control parameter from symbolic sequences: Unimodal maps with variable critical point. Chaos: An Interdisciplinary Journal of Nonlinear Science 19 (2009), Art. no. 023125 Google Scholar
  23. 23.
    Arroyo, D., Alvarez, G., Amigó, J.M., Li, S.: Cryptanalysis of a family of self-synchronizing chaotic stream ciphers. Communications in Nonlinear Science and Numerical Simulation 16(2), 805–813 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Arroyo, D., Alvarez, G., Li, S.: Some hints for the design of digital chaos-basedcryptosystems: lessons learned from cryptanalysis. In: Second IFAC Conference on Analysis and Control of Chaotic Systems, Queen Mary, University of London (2009)Google Scholar
  25. 25.
    Arroyo, D., Alvarez, G., Li, S., Li, C., Fernandez, V.: Cryptanalysis of a new chaotic cryptosystem based on ergodicity. International Journal of Modern Physics B 23(5), 651–659 (2009)MATHCrossRefGoogle Scholar
  26. 26.
    Arroyo, D., Alvarez, G., Li, S., Li, C., Nunez, J.: Cryptanalysis of a discrete-time synchronous chaotic encryption system. Physics Letter A 372(7), 1034–1039 (2008)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Arroyo, D., Li, C., Li, S., Alvarez, G.: Cryptanalysis of a computer cryptography scheme based on a filter bank. Chaos, Solitons & Fractals 41, 410–413 (2009)MATHCrossRefGoogle Scholar
  28. 28.
    Arroyo, D., Li, C., Li, S., Alvarez, G., Halang, W.A.: Cryptanalysis of an image encryption scheme based on a new total shuffling algorithm. Chaos, Solitons & Fractals 41(5), 2613–2616 (2009)MATHCrossRefGoogle Scholar
  29. 29.
    Arroyo, D., Rhouma, R., Alvarez, G., Li, S., Fernandez, V.: On the security of a new image encryption scheme based on chaotic map lattices. Chaos: An Interdisciplinary Journal of Nonlinear Science 18 (2008), Art. no. 033112Google Scholar
  30. 30.
    Banerjee, S., Yorke, J.A., Grebogi, C.: Robust chaos. Physical Review Letters 80, 14 (1998)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Baptista, M.S.: Cryptography with chaos. Physics Letters A 240(1-2), 50–54 (1998)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Beth, T., Lazic, D.E., Mathias, A.: Cryptanalysis of cryptosystems based on remote chaos replication. In: EUROCRYPT 1994. LNCS, vol. 950, pp. 318–331. Springer, Heidelberg (1994)Google Scholar
  33. 33.
    Brumley, D., Boneh, D.: Remote timing attacks are practical. In: Proceedings of the 12th USENIX Security Symposium, pp. 1–14. USENIX Association (2003)Google Scholar
  34. 34.
    Chee, C.Y., Xu, D.: Chaotic encryption using dicrete-time synchronous chaos. Physics Letters A 348(3-6), 284–292 (2006)MATHCrossRefGoogle Scholar
  35. 35.
    Chen, G., Ueta, T.: Yet another chaotic attactor. International Journal of Bifurcation and Chaos 9(7), 1465–1466 (1999)MathSciNetMATHCrossRefGoogle Scholar
  36. 36.
    Cornfeld, I.P., Fomin, S.V., Sinai, Y.G.: Ergodic theory. Springer, New York (1982)MATHGoogle Scholar
  37. 37.
    Cuomo, K., Oppenheim, A.V., Strogatz, S.: Synchronization of Lorenz-based chaotic circuits with applications to communications. IEEE Transactions on Circuits and Systems–II: Analog and Digital Signal Processing 40(10), 626–633 (1993)Google Scholar
  38. 38.
    Dedieu, H., Kennedy, M., Hasler, M.: Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua’s circuits. IEEE Transactions on Circuits and Systems–II: Analog and Digital Signal Processing 40, 634–641 (1993)Google Scholar
  39. 39.
    Dedieu, H., Ogorzalek, M.J.: Identifiability and identification of chaotic systems based on adaptive synchronization. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 44(10), 948–962 (1997)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos, Solitons & Fractals 18(1), 141–148 (2003)MathSciNetMATHCrossRefGoogle Scholar
  41. 41.
    Feldmann, U., Hasler, M., Schwarz, W.: Communication by chaotic signals: the inverse system approach. International Journal of Circuit Theory and Applications 24, 551–579 (1996)MATHCrossRefGoogle Scholar
  42. 42.
    Fradkov, A.L., Markov, A.Y.: Adaptive synchronization of chaotic systems based on speed gradient method and passification. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 44, 905–912 (1997)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Fridrich, J.: Symmetric ciphers based on two-dimensional chaotic maps. International Journal of Bifurcation and Chaos 8, 1259–1284 (1998)MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Gao, T., Chen, Z.: Image encryption based on a new total shuffling algorithm. Chaos, Solitons & Fractals 38(1), 213–220 (2008)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    González-Miranda, J.: Synchronization and control of chaos. Imperial College Press, London (2004)Google Scholar
  46. 46.
    Habutsu, T., Nishio, Y., Sasase, I., Mori, S.: A secret key cryptosystem by iterating a chaotic map. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 127–140. Springer, Heidelberg (1991)Google Scholar
  47. 47.
    Hasler, M.: Synchronization of chaotic systems and transmission of information. International Journal of Bifurcation and Chaos 8(4), 647–659 (1998)MATHCrossRefGoogle Scholar
  48. 48.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia (1961)Google Scholar
  49. 49.
    Hirsch, M.W., Smale, S.: Differential equations, dynamical systems, and linear algebra. Academic Press, Inc., San Diego (1974)MATHGoogle Scholar
  50. 50.
    Hu, G., Feng, Z., Meng, R.: Chosen ciphertext attack on chaos communication based on chaos synchronization. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 50(2), 275–279 (2003)MathSciNetCrossRefGoogle Scholar
  51. 51.
    Huijberts, H., Nijmeijer, H., Willems, R.: System identification in communication with chaotic systems. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 47, 800–808 (2000)Google Scholar
  52. 52.
    Inoue, E., Ushio, T.: Chaos communication using unknown input observers. Electronics and Communications in Japan Part III: Fundamental Electronic Science 84(12), 21–27 (2001)Google Scholar
  53. 53.
    Jakimoski, G., Kocarev, L.: Chaos and cryptography: Block encryption ciphers based on chaotic maps. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 48(2), 163–169 (2001)MathSciNetMATHCrossRefGoogle Scholar
  54. 54.
    Jiang, Z.P.: A note on chaotic secure communication systems. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 49(1), 92–96 (2002)CrossRefGoogle Scholar
  55. 55.
    Kocarev, L.: Chaos-based cryptography: A brief overview. IEEE Circuits and Systems Magazine 1(2), 6–21 (2001)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Kocarev, L., Halle, K.S., Eckert, K., Chua, L.O., Parlitz, U.: Transimission of digital signals by chaotic synchronization. International Journal of Bifurcation and Chaos 2(4), 973–977 (1992)MATHCrossRefGoogle Scholar
  57. 57.
    Kocarev, L., Makraduli, J., Amato, P.: Public-key encryption based on Chebyshev polynomials. Circuits, Systems, and Signal Processing 24, 497–517 (2005)MathSciNetMATHCrossRefGoogle Scholar
  58. 58.
    Kocarev, L., Sterjev, M., Fekete, A., Vattay, G.: Public-key encryption with chaos. Chaos: An Interdisciplinary Journal of Nonlinear Science 14(4), 1078–1082 (2004)MathSciNetMATHCrossRefGoogle Scholar
  59. 59.
    Kocarev, L., Szczepanski, J., Amigo, J., Tomovski, I.: Discrete chaos–I: Theory. IEEE Transactions on Circuits and Systems–I: Regular Papers 53(6), 1300–1309 (2006)Google Scholar
  60. 60.
    Kocher, P.C.: Timing attacks on implementations of diffie-hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar
  61. 61.
    Kolumban, G., Kennedy, M., Chua, L.O.: The role of synchronization in digital communications using chaos - Part II: Chaotic modulation and chaotic synchronization. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 45(11), 1129–1140 (1998)Google Scholar
  62. 62.
    Letellier, C., Gouesbet, G.: Topological characterization of reconstructed attractors modding out symmetries. Journal de Physique II 6(11), 1615–1638 (1996)CrossRefGoogle Scholar
  63. 63.
    Li, C., Li, S., Alvarez, G., Chen, G., Lo, K.-T.: Cryptanalysis of two chaotic encryption schemes based on circular bit shift and XOR operations. Physics Letters A 369, 23–30 (2007)MATHCrossRefGoogle Scholar
  64. 64.
    Li, S.: Analyses and new designs of digital chaotic ciphers. Ph.D. thesis, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China (2003), http://www.hooklee.com/pub.html
  65. 65.
    Li, S., Alvarez, G., Chen, G.: Breaking a chaos-based secure communication scheme designed by an improved modulation method. Chaos, Solitons & Fractals 25(1), 109–120 (2005)MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Li, S., Alvarez, G., Chen, G.: Return-map cryptanalysis revisited. International Journal of Bifurcation and Chaos 16(5), 1557–1568 (2006)MathSciNetMATHCrossRefGoogle Scholar
  67. 67.
    Li, S., Alvarez, G., Li, Z., Halang, W.: Analog chaos-based secure communications and cryptanalysis: a brief survey. In: Kurths, J., Fradkov, A., Chen, G. (eds.) 3rd Int. IEEE Scientific Conference on Physics and Control (PhysCon 2007), Potsdam, Germany, p. 92 (2007), Full edition available at http://www.hooklee.com/Papers/PhysCon2007.pdf
  68. 68.
    Li, S., Chen, G., Mou, X.: On the dynamical degradation of digital piecewise linear chaotic maps. International Journal of Bifurcation and Chaos 15(10), 3119–3151 (2005)MathSciNetMATHCrossRefGoogle Scholar
  69. 69.
    Li, S., Li, C., Chen, G., Bourbakis, N.G., Lo, K.T.: A general quantitative cryptanalysis of permutation-only multimedia ciphers against plaintext attacks. Signal Processing: Image Communication 23(3), 212–223 (2008)Google Scholar
  70. 70.
    Li, S., Mou, X., Cai, Y.: Pseudo-random bit generator based on couple chaotic systems and its applications in stream-ciphers cryptography. In: Pandu Rangan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 316–329. Springer, Heidelberg (2001)Google Scholar
  71. 71.
    Li, T.Y., Yorke, J.A.: Period three implies chaos. The American Mathematical Monthly 82, 985–992 (1975)MathSciNetMATHCrossRefGoogle Scholar
  72. 72.
    Lian, K.Y., Liu, P.: Synchronization with message embedded for generalized Lorenz chaotic circuits and its error analysis. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 47(9), 1418–1424 (2000)Google Scholar
  73. 73.
    Ling, B.W.-K., Ho, C.Y.-F., Tam, P.K.-S.: Chaotic filter bank for computer cryptography. Chaos, Solitons & Fractals 34, 817–824 (2007)CrossRefGoogle Scholar
  74. 74.
    Liu, L., Wu, X., Hu, H.: Estimating system parameters of Chua’s circuit from synchronizing signal. Physics Letters A 324(1), 36–41 (2004)MathSciNetMATHCrossRefGoogle Scholar
  75. 75.
    Lorenz, E.: Deterministic nonperiodic flow. Journal of the Atmospheric Sciences 20, 130–141 (1963)Google Scholar
  76. 76.
    Manjunath, G., Fournier-Prunaret, D.: A qualitative analysis of deciphering errors in chaos shift keying. International Journal of Bifurcation and Chaos 19(6), 2085–2092 (2009)MathSciNetMATHCrossRefGoogle Scholar
  77. 77.
    Masuda, N., Jakimoski, G., Aihara, K., Kocarev, L.: Chaotic block ciphers: from theory to practical algorithms. IEEE Transactions on Circuits and Systems–I: Regular Papers 53(6), 1341–1352 (2006)MathSciNetCrossRefGoogle Scholar
  78. 78.
    Matthews, R.: On the derivation of a chaotic encryption algorithm. Cryptologia 13, 29–42 (1989)MathSciNetCrossRefGoogle Scholar
  79. 79.
    Maze, G.: Algebraic methods for constructing one-way trapdoor functions. Ph.D. thesis, University of Notre Dame (2003)Google Scholar
  80. 80.
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography. CRC Press, Boca Raton (1997)Google Scholar
  81. 81.
    Millérioux, G., Amigó, J.M., Daafouz, J.: A connection between chaotic and conventional cryptography. IEEE Transactions on Circuits and Systems–I: Regular Papers 55(6), 1695–1703 (2008)MathSciNetCrossRefGoogle Scholar
  82. 82.
    Millerioux, G., Daafouz, J.: Unknown input observers for message-embedded chaos synchronization of discrete-time systems. International Journal of Bifurcation and Chaos 14(4), 1357–1368 (2004)MathSciNetMATHCrossRefGoogle Scholar
  83. 83.
    Millerioux, G., Mira, C.: Coding scheme based on chaos synchronization from noninvertible maps. International Journal of Bifurcation and Chaos 8, 2019–2029 (1998)MathSciNetMATHCrossRefGoogle Scholar
  84. 84.
    NIST: A statistical test suite for random and pseudorandom number generators for cryptographic applications. NIST Special Publication 800-22 Revision 1A (2010), http://csrc.nist.gov/rng/rng2.html
  85. 85.
    Orúe, A., Alvarez, G., Pastor, G., Romera, M., Montoya, F., Li, S.: A new parameter determination method for some double-scroll chaotic systems and its applications to chaotic cryptanalysis. Communications in Nonlinear Science and Numerical Simulations 15(11), 3471–3483 (2010)CrossRefGoogle Scholar
  86. 86.
    Orúe, A., Fernandez, V., Alvarez, G., Pastor, G., Romera, M., Montoya, F.: Determination of the parameters for a Lorenz system and application to break the security of two-channel chaotic cryptosystems. Physics Letters A 372(34), 5588–5592 (2008)CrossRefGoogle Scholar
  87. 87.
    Pareek, N.K., Patidar, V., Sud, K.K.: Discrete chaotic cryptography using external key. Physics Letters A 309, 75–82 (2003)MathSciNetMATHCrossRefGoogle Scholar
  88. 88.
    Parker, A., Short, K.M.: Reconstructing the keystream form a chaotic encrypiton scheme. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 48(5), 624–630 (2001)Google Scholar
  89. 89.
    Parlitz, U., Chua, L.O., Kocarev, L., Halle, K.S., Shang, A.: Transmission of digital signals by chaotic synchronization. International Journal of Bifurcation and Chaos 2(4), 973–977 (1992)MATHCrossRefGoogle Scholar
  90. 90.
    Pastor, G., Romera, M., Montoya, F.: A revision of the Lyapunov exponent in 1D quadratic maps. Physica D 107, 17–22 (1997)MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Physical Review Letters 64(8), 821–824 (1990)MathSciNetCrossRefGoogle Scholar
  92. 92.
    Pérez, G., Cerdeira, H.A.: Extracting messages masked by chaos. Physical Review Letters 74(11), 1970–1973 (1995)CrossRefGoogle Scholar
  93. 93.
    Pisarchik, A.N., Flores-Carmona, N.J., Carpio-Valadez, M.: Encryption and decryption of images with chaotic map lattices. Chaos: An Interdisciplinary Journal of Nonlinear Science 16(3) (2006), Art. no. 033118Google Scholar
  94. 94.
    Rajendra, U., Bhat, S., Kumar, S., Min, L.: Transimission and storage of medical images with patient information. Comput. Biol. Med. 33, 303–310 (2003)Google Scholar
  95. 95.
    Rhouma, R., Solak, E., Arroyo, D., Li, S., Alvarez, G., Belghith, S.: Comment on ”modified Baptista type chaotic cryptosystem via matrix secret key”. Phys. Lett. A 372, 5427 (2008); Physics Letters A  373(37), 3398–3400 (2009)MathSciNetCrossRefGoogle Scholar
  96. 96.
    Shannon, C.: Communication theory of secrecy systems. Bell System Technical Journal 28, 656–715 (1949)MathSciNetMATHGoogle Scholar
  97. 97.
    Skrobek, A.: Approximation of a chaotic orbit as a cryptanalytical method on Baptista’s cipher. Physics Letters A 372(6), 849–859 (2008)CrossRefGoogle Scholar
  98. 98.
    Solak, E., Çokal, C., Yildiz, O.T., Biyikoğlu, T.: Cryptanalysis of Fridrich’s chaotic image encryption. International Journal of Bifurcation and Chaos 20(5), 1405–1413 (2010)MathSciNetMATHCrossRefGoogle Scholar
  99. 99.
    Stamp, M., Low, R.M.: Applied cryptanalysis: breaking ciphers in the real world. John Wiley & Sons, Inc., Hoboken (2007)Google Scholar
  100. 100.
    Stinson, D.R.: Cryptography: Theory and Practice. CRC Press, Boca Raton (1995)MATHGoogle Scholar
  101. 101.
    Storm, C., Freeman, W.J.: Detection and classification of nonlinear dynamic switching events. Physical Review E 58, 1159–1162 (2002)MathSciNetGoogle Scholar
  102. 102.
    Szczepanski, J., Amigó, J., Michalek, T., Kocarev, L.: Cryptographically secure substitutions based on the approximation of mixing maps. IEEE Transactions on Circuits and Systems–I: Regular Papers 52, 443–453 (2005)MathSciNetCrossRefGoogle Scholar
  103. 103.
    Tao, C., Du, G.: A new approach to breaking down chaotic secure communication. International Journal of Bifurcation and Chaos 13(9), 2689–2698 (2003)MATHCrossRefGoogle Scholar
  104. 104.
    Tao, C., Du, G., Zhang, Y.: Decoding digital information from the cascaded heterogeneous chaotic systems. International Journal of Bifurcation and Chaos 13(6), 1599–1608 (2003)MATHCrossRefGoogle Scholar
  105. 105.
    Vaidya, P.G., Angadi, S.: Decoding chaotic cryptography without access to the superkey. Chaos, Solitons & Fractals 17(2-3), 379–386 (2003)MathSciNetMATHCrossRefGoogle Scholar
  106. 106.
    Wang, X., Duan, C., Gu, N.: A new chaotic cryptography based on ergodicity. International Journal of Modern Physics B 22(7), 901–908 (2008)MathSciNetCrossRefGoogle Scholar
  107. 107.
    Wang, X., Zhan, M., Lai, C.H., Hu, G.: Error function attack of chaos synchronization based encrypiton schemes. Chaos: An Interdisciplinary Journal of Nonlinear Science 14(1), 128–137 (2004)Google Scholar
  108. 108.
    Wu, C.W.: Synchronization in coupled chaotic circuits and systems. World Scientific, New Jersey (2002)MATHCrossRefGoogle Scholar
  109. 109.
    Wu, C.W., Chua, L.O.: A simple way to synchronize chaotic systems with applications to secure communications systems. International Journal of Bifurcation and Chaos 3(6), 1619–1627 (1993)MATHCrossRefGoogle Scholar
  110. 110.
    Xiao, D., Liao, X., Wong, K.W.: An efficient entire chaos-based scheme for deniable authentication. Chaos, Solitons & Fractals 23(4), 1327–1331 (2005)MATHGoogle Scholar
  111. 111.
    Yang, T.: Recovery of digital signals from chaotic switching. International Journal of Circuit Theory and Applications 23(6), 611–615 (1995)MATHCrossRefGoogle Scholar
  112. 112.
    Yang, T.: A survey of chaotic secure communication systems. Intenational Journal of Computational Cognition 2(2), 81–130 (2004)Google Scholar
  113. 113.
    Yang, T., Wu, C.W., Chua, L.O.: Cryptography based on chaotic systems. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 44(5), 469–472 (1997)MATHCrossRefGoogle Scholar
  114. 114.
    Yang, T., Yang, L.–B., Yang, C.-M.: Breaking chaotic secure communications using spectrogram. Physics Letters A 247(1-2), 105–111 (1998)CrossRefGoogle Scholar
  115. 115.
    Yang, T., Yang, L.-B., Yang, C.-M.: Breaking chaotic switching using generalized synchronization. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 45(10), 1062–1067 (1998)CrossRefGoogle Scholar
  116. 116.
    Zhang, Y., Tao, C., Jiang, J.J.: Theoretical and experimental studies of parameter estimation based on chaos feedback synchronization. Chaos: An Interdisciplinary Journal of Nonlinear Science 16(4) (2006), Art. no. 043122Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gonzalo Alvarez
    • 1
  • José María Amigó
    • 2
  • David Arroyo
    • 3
  • Shujun Li
    • 4
  1. 1.Consejo Superior de Investigaciones CientíficasInstituto de Física AplicadaMadridSpain
  2. 2.Centro de Investigación OperativaUniversidad Miguel HernándezElcheSpain
  3. 3.Consejo Superior de Investigaciones CientíficasInstituto de AcústicaMadridSpain
  4. 4.Fachbereich Informatik und InformationswissenschaftUniversität KonstanzKonstanzGermany

Personalised recommendations