Advertisement

Global Characterization of the CEC 2005 Fitness Landscapes Using Fitness-Distance Analysis

  • Christian L. Müller
  • Ivo F. Sbalzarini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6624)

Abstract

We interpret real-valued black-box optimization problems over continuous domains as black-box landscapes. The performance of a given optimization heuristic on a given problem largely depends on the characteristics of the corresponding landscape. Designing statistical measures that can be used to classify landscapes and quantify their topographical properties is hence of great importance. We transfer the concept of fitness-distance analysis from theoretical biology and discrete combinatorial optimization to continuous optimization and assess its potential to characterize black-box landscapes. Using the CEC 2005 benchmark functions, we empirically test the robustness and accuracy of the resulting landscape characterization and illustrate the limitations of fitness-distance analysis. This provides a first step toward a classification of real-valued black-box landscapes over continuous domains.

Keywords

Fitness landscape landscape characterization fitness-distance correlation continuous black-box optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wright, S.: The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In: Proceedings of the Sixth International Congress on Genetics (1932)Google Scholar
  2. 2.
    Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimizations. Operations Research Letters 16(2), 101–113 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hu, T.C., Klee, V., Larman, D.: Optimization of globally convex functions. SIAM Journal on Control and Optimization 27(5), 1026–1047 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hansen, N., Kern, S.: Evaluating the CMA Evolution Strategy on Multimodal Test Functions. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN VIII 2004. LNCS, vol. 3242, pp. 282–291. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Lunacek, M., Whitley, D.: The Dispersion Metric and the CMA Evolution Strategy. In: GECCO 2006: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 477–484. ACM Press, New York (2006)Google Scholar
  6. 6.
    Müller, C.L., Baumgartner, B., Sbalzarini, I.F.: Particle Swarm CMA Evolution Strategy for the optimization of multi-funnel landscapes. In: Proc. of IEEE Congress on Evolutionary Computation (CEC 2009), pp. 2685–2692 (May 2009)Google Scholar
  7. 7.
    Sakuma, J., Kobayashi, S.: Extrapolation-directed crossover for real-coded ga: overcoming deceptive phenomena by extrapolative search. In: Proceedings of the 2001 Congress on Evolutionary Computation, vol. 1, pp. 655–662 (2001)Google Scholar
  8. 8.
    Lunacek, M., Whitley, D., Sutton, A.: The Impact of Global Structure on Search. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN X 2008. LNCS, vol. 5199, pp. 498–507. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Müller, C.L., Sbalzarini, I.F.: A Tunable Real-world Multi-funnel Benchmark Problem for Evolutionary Optimization - And Why Parallel Island Models Might Remedy the Failure of CMA-ES on It. In: Dourado, A., Rosa, A.C., Madani, K. (eds.) Proc. of the International Joint Conference on Computational Intelligence (IJCCI), October 5-7, pp. 248–253 (2009)Google Scholar
  10. 10.
    Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution, 1st edn. Oxford University Press, USA (1993)Google Scholar
  11. 11.
    Kauffman, S.A., Weinberger, E.D.: The NK model of rugged fitness landscapes and its application to maturation of the immune response. Journal of Theoretical Biology 141(2), 211–245 (1989)CrossRefGoogle Scholar
  12. 12.
    Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: Proceedings of the 6th International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann Publishers Inc., San Francisco (1995)Google Scholar
  13. 13.
    Merz, P., Freisleben, B.: Memetic Algorithms and the Fitness Landscape of the Graph Bi-Partitioning Problem. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN V 1998. LNCS, vol. 1498, p. 765. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Ikeda, K., Kobayashi, S.: GA Based on the UV-Structure Hypothesis and Its Application to JSP. In: PPSN VI: Proceedings of the 6th International Conference on Parallel Problem Solving from Nature, London, UK, pp. 273–282. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Merz, P.: Advanced fitness landscape analysis and the performance of memetic algorithms. Evol. Comput. 12(3), 303–325 (2004)CrossRefGoogle Scholar
  16. 16.
    Wang, Y., Li, B.: Understand behavior and performance of real coded optimization algorithms via nk-linkage model. In: IEEE Congress on Evolutionary Computation, CEC 2008. IEEE World Congress on Computational Intelligence, pp. 801–808 (1-6, 2008)Google Scholar
  17. 17.
    He, J., Reeves, C., Witt, C., Yao, X.: A note on problem difficulty measures in black-box optimization: Classification, realizations and predictability. Evol. Comput. 15(4), 435–443 (2007)CrossRefGoogle Scholar
  18. 18.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on Real-Parameter Optimization. Technical report, Nanyang Technological University, Singapore (May 2005)Google Scholar
  19. 19.
    Hansen, N.: Compilation of Results on the 2005 CEC Benchmark Function Set. Technical report, Computational Laboratory (CoLab), Institute of Computational Science, ETH Zurich (2006)Google Scholar
  20. 20.
    Vanneschi, L., Codecasa, D., Mauri, G.: An empirical comparison of parallel and distributed particle swarm optimization methods. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO 2010, pp. 15–22. ACM, New York (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian L. Müller
    • 1
  • Ivo F. Sbalzarini
    • 1
  1. 1.Institute of Theoretical Computer Science and Swiss Institute of BioinformaticsETH ZurichZurichSwitzerland

Personalised recommendations