Driving Faster Than a Human Player

  • Jan Quadflieg
  • Mike Preuss
  • Günter Rudolph
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6624)

Abstract

TORCS car racing bots have improved significantly in the last years. We show that accurate curvature information for the upcoming corners enables offline learning a near-optimal driving style that consistently beats an expert human player (and the fastest currently known bots). Generalization to other tracks often, but not always succeeds, so that the method is extended by an online error correction mechanism well suited to the warmup phase of the Simulated Car Racing Championships.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: McKay, B., et al. (eds.) The 2005 IEEE International Congress on Evolutionary Computation (CEC 2005), vol. 2, pp. 1769–1776 (2005)Google Scholar
  2. 2.
    Butz, M., Lönneker, T.: Optimized sensory-motor couplings plus strategy extensions for the torcs car racing challenge. In: Proceedings of the IEEE Symposium on Computational Intelligence and Games, 2009, pp. 317–324 (2009)Google Scholar
  3. 3.
    Cardamone, L., Loiacono, D., Lanzi, P.L., Bardelli, A.P.: Searching for the optimal racing line using genetic algorithms. In: Proceedings of the IEEE Conference on Computational Intelligence and Games, 2010, pp. 388–394 (2010)Google Scholar
  4. 4.
    Loiacono, D., Cardamone, L., Lanzi, P.L.: Simulated car racing championship 2010: Competition software manual. Tech. Rep. 2010.8, Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy (2010)Google Scholar
  5. 5.
    Loiacono, D., Lanzi, P.L., Togelius, J., Onieva, E., Pelta, D.A., Butz, M.V., Lönneker, T.D., Cardamone, L., Perez, D., Saez, Y., Preuss, M., Quadflieg, J.: The 2009 simulated car racing championship. IEEE Transactions on Computational Intelligence and Games 2(2), 131–147 (2010)CrossRefGoogle Scholar
  6. 6.
    Muñoz, J., Gutierrez, G., Sanchis, A.: A human-like torcs controller for the simulated car racing championship. In: Proceedings of the IEEE Conference on Computational Intelligence and Games, 2010, pp. 473–480 (2010)Google Scholar
  7. 7.
    Onieva, E., Pelta, D.A., Alonso, J., Milanés, V., Pérez, J.: A modular parametric architecture for the torcs racing engine. In: Proceedings of the IEEE Symposium on Computational Intelligence and Games, 2009, pp. 256–262 (2009)Google Scholar
  8. 8.
    Quadflieg, J., Preuss, M., Kramer, O., Rudolph, G.: Learning the track and planning ahead in a car racing controller. In: 2010 IEEE Symposium on Computational Intelligence and Games (CIG), pp. 395 –402 (2010)Google Scholar
  9. 9.
    Richards, F.J.: A Flexible Growth Function for Empirical Use. J. Exp. Bot. 10(2), 290–301 (1959)CrossRefGoogle Scholar
  10. 10.
    Wymann, B.: The open racing car simulator (December 9, 2009), http://torcs.sourceforge.net, http://torcs.sourceforge.net

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jan Quadflieg
    • 1
  • Mike Preuss
    • 1
  • Günter Rudolph
    • 1
  1. 1.Chair of Algorithm Engineering, Computational Intelligence Group, Dept. of Computer ScienceTechnische Universität DortmundGermany

Personalised recommendations