Extremal Optimization Applied to Task Scheduling of Distributed Java Programs

  • Eryk Laskowski
  • Marek Tudruj
  • Ivanoe De Falco
  • Umberto Scafuri
  • Ernesto Tarantino
  • Richard Olejnik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6625)


The paper presents new Java programs scheduling algorithms for execution on clusters of Java Virtual Machines (JVMs), which involve extremal optimization (EO) combined with task clustering. Two new scheduling algorithms are presented and compared. The first employs task clustering to reduce an initial program graph and then applies extremal optimization to schedule the reduced program graph to system resources. The second algorithm applies task clustering only to find an initial solution which is next improved by the EO algorithm working on the initial program graph. Both algorithms are also compared to an EO algorithm which does not use the clustering approach.


distributed systems scheduling evolutionary algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baude, et al.: Programming, Composing, Deploying for the Grid. In: Cunha, J.C., Rana, O.F. (eds.) GRID COMPUTING: Software Environments and Tools. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Boettcher, S., Percus, A.G.: Extremal optimization: methods derived from coevolution. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 825–832. Morgan Kaufmann, San Francisco (1999)Google Scholar
  3. 3.
    Boettcher, S., Percus, A.G.: Extremal optimization: an evolutionary local–search algorithm. In: Bhargava, H.M., Kluver, N.Y. (eds.) Computational Modeling and Problem Solving in the Networked World, Boston (2003)Google Scholar
  4. 4.
    Don, F.: A taxonomy of task scheduling algorithms in the Grid. Parallel Processing Letters 17(4), 439–454 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    De Falco, I., Laskowski, E., Olejnik, R., Scafuri, U., Tarantino, E., Tudruj, M.: Extremal Optimization Approach Applied to Initial Mapping of Distributed Java Programs. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6271, pp. 180–191. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Hwang, J.-J., et al.: Scheduling Precedence Graphs in Systems with Interprocessor Communication Times. Siam J. Comput. 18(2), 244–257 (1989)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Jimenez, J.B., Hood, R.: An Active Objects Load Balancing Mechanism for Intranet. In: Workshop on Sistemas Distribuidos y Paralelismo, WSDP 2003, Chile (2003)Google Scholar
  8. 8.
    Kak, A.C., Slaney, M.: Principles of Computerized Tomographic Imaging. IEEE Press, New York (1988)MATHGoogle Scholar
  9. 9.
    Laskowski, E., et al.: Java Programs Optimization Based on the Most–Often–Used–Paths Approach. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds.) PPAM 2005. LNCS, vol. 3911, pp. 944–951. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Laskowski, E., et al.: Byte-code scheduling of Java programs with branches for Desktop Grid. Future Generation Computer Systems 23(8), 977–982 (2007)CrossRefGoogle Scholar
  11. 11.
    Sneppen, K., et al.: Evolution as a self–organized critical phenomenon. Proc. Natl. Acad. Sci. 92, 5209–52136 (1995)CrossRefGoogle Scholar
  12. 12.
    Toursel, B., Olejnik, R., Bouchi, A.: An object observation for a Java adaptative distributed application platform. In: International Conference on Parallel Computing in Electrical Engineering (PARELEC 2002), pp. 171–176 (September 2002)Google Scholar
  13. 13.
    Yang, T., Gerasoulis, A.: DSC: Scheduling Parallel Tasks on an Unbounded Number of Processors. IEEE Trans. on Parallel and Distributed Systems 5(9) (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Eryk Laskowski
    • 1
  • Marek Tudruj
    • 1
    • 3
  • Ivanoe De Falco
    • 2
  • Umberto Scafuri
    • 2
  • Ernesto Tarantino
    • 2
  • Richard Olejnik
    • 4
  1. 1.Institute of Computer SciencePolish Academy of SciencesWarsawPoland
  2. 2.Institute of High Performance Computing and NetworkingICAR-CNRNaplesItaly
  3. 3.Polish-Japanese Institute of Information TechnologyWarsawPoland
  4. 4.Computer Science LaboratoryUniversity of Science and Technology of LilleFrance

Personalised recommendations