Integrated Generation of Working Time Models and Staff Schedules in Workforce Management

  • Volker Nissen
  • Maik Günther
  • René Schumann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6625)

Abstract

Our project addresses the question how to automatically and simultaneously assign staff to workstations and generate optimised working time models on the basis of fluctuating personnel demand while taking into account practical constraints. Two fundamentally different solution approaches, a specialized constructive heuristic (commercial) and a hybrid metaheuristic (the evolution strategy) that integrates a repair heuristic to remove contraint violations are compared on a complex real-world problem from a retailer. The hybrid approach clearly outperforms the tailored constructive method. Taken together with our similar findings on a related staff scheduling problem from logistics this result suggests that the evolution strategy, despite its original focus on continuous parameter optimisation, is a powerful tool in combinatorial optimisation and deserves more attention. Moreover, hybridising a metaheuristic with a problem-specific repair heuristic seems a useful approach of resolving the conflict between domain-specific characteristics of a real-world problem and the desire to employ generic optimisation techniques, at least in the domain of workforce management.

Keywords

integrated planning metaheuristic constructive heuristic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: A comprehensive introduction. Nat. Comp. 1, 3–52 (2002)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Castillo, I., Joro, T., Li, Y.Y.: Workforce scheduling with multiple objectives. EJOR 196, 162–170 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems – a bibliographic survey. EJOR 151(3), 447–460 (2003)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D.: An annotated biblography of personnel scheduling and rostering. Annals of OR 127, 21–144 (2002)CrossRefMATHGoogle Scholar
  5. 5.
    Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A review of applications, methods and models. EJOR 153(1), 3–27 (2004)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Fowler, J.W., Wirojanagud, P., Gel, E.S.: Heuristics for workforce planning with worker differences. EJOR 190(3), 724–740 (2008)CrossRefMATHGoogle Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. Freeman, New York (1979)MATHGoogle Scholar
  8. 8.
    Günther, M.: Hochflexibles Workforce Management. PhD dissertation. Ilmedia (2011) (to appear)Google Scholar
  9. 9.
    Günther, M., Nissen, V.: Sub-daily staff scheduling for a logistics service provider. KI 24(2), 105–113 (2010)Google Scholar
  10. 10.
    Hare, D.R.: Staff scheduling with ilog solver. Technical report, Okanagan University College (2007)Google Scholar
  11. 11.
    TU Ilmenau. Test data sub-daily staff scheduling (2010), http://www.tu-ilmenau.de/wid/forschung/testprobleme-personaleinsatzplanung
  12. 12.
    Kabak, Ö., Ülengin, F., Akta, E., Önsel, S., Topcu, Y.I.: Efficient shift scheduling in the retail sector through two-stage optimization. EJOR 184(1), 76–90 (2008)CrossRefMATHGoogle Scholar
  13. 13.
    Lesaint, D., Voudouris, C., Azarmi, N., Alletson, I., Laithwaite, B.: Field workforce scheduling. BT Technology Journal 21(4), 23–26 (2003)CrossRefGoogle Scholar
  14. 14.
    Melachrinoudis, E., Min, H.: The hybrid queuing and bi-objective integer programming model for scheduling frontline employees in a retail organisation. Int. J. of Services Techn. and Management 9(1), 33–50 (2008)CrossRefGoogle Scholar
  15. 15.
    Mohan, S.: Scheduling part-time personnel with availability restrictions and preferences to maximize employee satisfaction. Math. and Comp. Model. 48(11), 1806–1813 (2008)CrossRefMATHGoogle Scholar
  16. 16.
    Nissen, V., Gold, S.: Survivable network design with an evolution strategy. In: Yang, A., Shan, Y., Bui, L.T. (eds.) Success in Evolutionary Computation. SCI, pp. 263–283. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Pastor, R., Olivella, J.: Selecting and adapting weekly work schedules with working time accounts. EJOR 184(1), 1–12 (2008)CrossRefMATHGoogle Scholar
  18. 18.
    Pinedo, M.: Planning and Scheduling in Manufacturing and Service. Springer Series in Operations Research. Springer, New York (2005)MATHGoogle Scholar
  19. 19.
    Prüm, H.: Entwicklung von Algorithmen zur Personaleinsatzplanung mittels ganzzahliger linearer Optimierung. Master thesis. FH Trier (2006)Google Scholar
  20. 20.
    Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 139–148. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  21. 21.
    Sauer, J., Schumann, R.: Modelling and solving workforce scheduling problems. In: Sauer, J., Edelkamp, S., Schattenberg, B. (eds.) 21. Workshop PUK, Osnabrück, pp. 93–101 (2007)Google Scholar
  22. 22.
    Schumann, R., Sauer, J.: Implications and consequences of mass customization on manufacturing control. In: Blecker, T., Edwards, K., Friedrich, G., Salvador, F. (eds.) Innovative Processes and Products for Mass Customization, Hamburg, GITO, pp. 365–378 (2007)Google Scholar
  23. 23.
    Tien, J., Kamiyama, A.: On manpower scheduling algorithms. SIAM Rev. 24(3), 275–287 (1982)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Valls, V., Perez, A., Quintanilla, S.: Skilled workforce scheduling in service centres. EJOR 193(3), 791–804 (2009)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Volker Nissen
    • 1
  • Maik Günther
    • 1
  • René Schumann
    • 2
  1. 1.Information Systems in ServicesTU IlmenauIlmenauGermany
  2. 2.Information Systems and SimulationUniversity Frankfurt/M.FrankfurtGermany

Personalised recommendations