Evolving Textures from High Level Descriptions: Gray with an Accent Color

  • Craig Reynolds
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6625)

Abstract

This paper describes a prototype evolutionary texture synthesis tool meant to assist a designer or artist by automatically discovering many candidate textures that fit a given stylistic description. The textures used here are small color images, created by procedural texture synthesis. This prototype uses a single stylistic description: a textured gray image with a small amount of color accent. A hand-written prototype fitness function rates how well an image meets this description. Genetic programming uses the fitness function to evolve programs written in a texture synthesis language. A tool like this can automatically generate a catalog of variations on the given theme. A designer could then scan through these to pick out those that seem aesthetically interesting. Their procedural “genetic” representation would allow them to be further adjusted by interactive evolution. It also allows re-rendering them at arbitrary resolutions and provides a way to store them in a highly compressed form allowing lossless reconstruction.

Keywords

texture synthesis evolutionary computation genetic programming GP evolutionary art design tool 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alsing, R.: Genetic Programming: Evolution of MonaLisa (2008), http://rogeralsing.com/2008/12/07/genetic-programming-evolution-of-mona-lisa/
  2. 2.
    Dawkins, R.: The Blind Watchmaker. W. W. Norton, New York (1986)Google Scholar
  3. 3.
    den Heijer, E., Eiben, A.E.: Using Aesthetic Measures to Evolve Art. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 321–330. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    den Heijer, E., Eiben, A.E.: Comparing aesthetic measures for evolutionary art. In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 311–320. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    DiPaola, S., Gabora, L.: Incorporating characteristics of human creativity into an evolutionary art algorithm. Genetic Programming and Evolvable Machines 10(2), 97–110 (2009)CrossRefGoogle Scholar
  6. 6.
    Draves, S.: The Electric Sheep and their Dreams in High Fidelity. In: Proceedings of the 4th International Symposium on Non-photorealistic Animation and Rendering (NPAR 2006), pp. 7–9. ACM, New York (2006), http://electricsheep.org/ CrossRefGoogle Scholar
  7. 7.
    Gagné, C., Parizeau, M.: Genericity in Evolutionary Computation Software Tools: Principles and Case-Study. International Journal on Artificial Intelligence Tools 15(2), 173–194 (2006)CrossRefGoogle Scholar
  8. 8.
    Galanter, P.: The Problem with Evolutionary Art Is... In: Di Chio, C., Brabazon, A., Di Caro, G.A., Ebner, M., Farooq, M., Fink, A., Grahl, J., Greenfield, G., Machado, P., O’Neill, M., Tarantino, E., Urquhart, N. (eds.) EvoApplications 2010. LNCS, vol. 6025, pp. 321–330. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Hertzmann, A.: Paint By Relaxation. In: Proceedings of the Computer Graphics International Conference, pp. 47–55. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  10. 10.
    Montana, D.J.: Strongly typed genetic programming. Evolutionary Computation 3(2), 199–230 (1995)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Reynolds, C.: Texture Synthesis Diary (2010), http://www.red3d.com/cwr/texsyn/diary.html
  13. 13.
    Reynolds, C.: Interactive Evolution of Camouflage. In: Proceedings of the 12th International Conference on the Synthesis and Simulation of Living Systems (ALife XII). MIT Press, Cambridge (2010), http://www.red3d.com/cwr/iec/ Google Scholar
  14. 14.
    Sims, K.: Artificial evolution for computer graphics. In: Proceedings of SIGGRAPH 1991, pp. 319–328. ACM, New York (1991)Google Scholar
  15. 15.
    Stanley, K.: Compositional Pattern Producing Networks: A Novel Abstraction of Development. Genetic Programming and Evolvable Machines 8(2), 131–162 (2007)CrossRefGoogle Scholar
  16. 16.
    Wiens, A.L., Ross, B.J.: Gentropy: Evolutionary 2D Texture Generation. Computers and Graphics Journal 26, 75–88 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Craig Reynolds
    • 1
  1. 1.US R&DSony Computer EntertainmentUSA

Personalised recommendations