Neurogranular Synthesis: Granular Synthesis Controlled by a Pulse-Coupled Network of Spiking Neurons

  • Kevin McCracken
  • John Matthias
  • Eduardo Miranda
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6625)

Abstract

We introduce a method of generating grain parameters of a granular synthesiser in real-time by using a network of artificial spiking neurons, the behaviour of which is determined by user-control of a small number of network parameters; ‘Neurogranular synthesis’. The artificial network can exhibit a wide variety of behaviour from loosely correlated to highly synchronised, which can produce interesting sonic results, particularly with regard to rhythmic textures.

Keywords

Spiking neurons granular synthesis interactive musical control systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bi, G., Poo, M.: Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type. Journal of Neuroscience 18(24), 10464–10472 (1998)Google Scholar
  2. 2.
    Bokesoy, S., Pape, G.: Stochos: Software for Real-Time Synthesis of Stochastic Music. Computer Music Journal 27(3), 33–43 (2003)CrossRefGoogle Scholar
  3. 3.
    Ferguson, E.: The Future of Music? It might be... The Observer, London (February 25, 2009)Google Scholar
  4. 4.
    Gabor, D.: Acoustical Quanta and the Theory of Hearing. Nature 159(4044), 591–594 (1947)CrossRefGoogle Scholar
  5. 5.
    Grant, J., Matthias, J.R., Ryan, N., Jones, D., Hodgson, T., Outram, N.: The Fragmented Orchestra (2009), www.thefragmentedorchestra.com
  6. 6.
    Hickling, A.: Noises Off, The Guardian (December 19, 2008)Google Scholar
  7. 7.
    Hodgkin, A.L., Huxley, A.F.: A Quantitative Description of Ion Currents and its Applications to Conduction and Excitation in Nerve Membranes. J. Physiol (Lond.) 117, 500–544 (1952)CrossRefGoogle Scholar
  8. 8.
    Izhikevich, E.M.: A Simple Model of Spiking Neurons. IEEE Transactions on Neural Networks 14, 1469 (2003)CrossRefGoogle Scholar
  9. 9.
    Izhikevich, E.M.: Which Model to Use for Cortical Spiking Neurons? IEEE Transactions on Neural Networks 15, 1063–1070 (2004)CrossRefGoogle Scholar
  10. 10.
    Izhikevich, E.M., Gally, J.A., Edelman, G.M.: Spike-timing Dynamics of Neuronal Groups. Cerebral Cortex 14, 933–944 (2004)CrossRefGoogle Scholar
  11. 11.
    Lubenov, E.V., Siapas, A.G.: Neuron.  58, 118–131 (2008)Google Scholar
  12. 12.
    Matthias, J.R., Ryan, N.: Cortical Songs. CD. Nonclassical Records, London (2008)Google Scholar
  13. 13.
    Miranda, E.R., Wanderley, M.M.: New Digital Musical Instruments: Control and Interaction Beyond the Keyboard. The Computer Music and Digital Audio Series. A-R Editions, Middleton (2006)Google Scholar
  14. 14.
    Miranda, E.R., Matthias, J.R.: Music Neurotechnology for Sound Synthesis. Leonardo 42, 439–442 (2009)CrossRefGoogle Scholar
  15. 15.
    Morrison, R.: Liverpool ends year on a cultural high with The Fragmented Orchestra. The Times, London (2008)Google Scholar
  16. 16.
    Murray, J., Miranda, E.R., Matthias, J.: Real-time Granular Synthesis with Spiking Neurons. In: Proceedings of Consciousness Reframed - 8th International Conference. University of Plymouth, Plymouth (2006) (invited talk) Google Scholar
  17. 17.
    Roads, C.: Microsound, pp. 14–16. MIT Press, Cambridge (2004)Google Scholar
  18. 18.
    Roads, C.: Microsound, pp. 383–388. MIT Press, Cambridge (2004)Google Scholar
  19. 19.
    Truax, B.: Real-Time Granular Synthesis with the DMX-100. Computer Music Journal 12(2) (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kevin McCracken
    • 1
  • John Matthias
    • 1
  • Eduardo Miranda
    • 1
  1. 1.Faculty of ArtsUniversity of PlymouthUK

Personalised recommendations