Advertisement

A Sonic Eco-System of Self-Organising Musical Agents

  • Arne Eigenfeldt
  • Philippe Pasquier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6625)

Abstract

We present a population of autonomous agents that exist within a sonic eco-system derived from real-time analysis of live audio. In this system, entitled Coming Together: Shoals, agents search for food consisting of CataRT unit analyses, which, when found, are consumed through granulation. Individual agents are initialised with random synthesis parameters, but communicate these parameters to agents in local neighborhoods. Agents form social networks, and converge their parameters within these networks, thereby creating unified grain streams. Separate gestures thus emerge through the self-organisation of the population.

Keywords

Sonic eco-system Artificial-Life self-organisation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beyls, P.: Interaction and Self-Organisation in a Society of Musical Agents. In: Proceedings of ECAL 2007 Workshop on Music and Artificial Life, Lisbon (2007)Google Scholar
  2. 2.
    Biles, J.: Autonomous GenJam: Eliminating the Fitness Bottleneck by Eliminating Fitness. In: Proceedings of the 2001 Genetic and Evolutionary Computation Conference Workshop Program, San Francisco (2001)Google Scholar
  3. 3.
    Blackwell, T., Young, M.: Swarm Granulator. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 399–408. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bown, O.: A Framework for Eco-System-Based Generative Music. In: Proceedings of the SMC 2009, Porto, pp. 195–200 (2009)Google Scholar
  5. 5.
    Bown, O.: Eco-System Models for Real-time Generative Music: A Methodology and Framework. In: Proceedings of the ICMC 2009, Montreal, pp. 537–540 (2009)Google Scholar
  6. 6.
    Eigenfeldt, A.: Emergent Rhythms through Multi-agency in Max/MSP. In: Computer Music Modeling and Retrieval: Sense of Sounds, CMMR, pp. 368–379 (2008)Google Scholar
  7. 7.
    Eigenfeldt, A., Pasquier, P.: A Realtime Generative Music System using Autonomous Melody, Harmony, and Rhythm Agents. In: 12th Generative Art Conference Milan (2009)Google Scholar
  8. 8.
    Eigenfeldt, A.: The Evolution of Evolutionary Software: Intelligent Rhythm Generation in Kinetic Engine. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 498–507. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Eigenfeldt, A.: Coming Together - Composition by Negotiation. In: Proceedings of ACM Multimedia, Firenze (2010)Google Scholar
  10. 10.
    Martins, J., Miranda, E.R.: Emergent rhythmic phrases in an A-Life environment. In: Proceedings of ECAL 2007 Workshop on Music and Artificial Life, Lisbon (2007)Google Scholar
  11. 11.
    McCormack, J.: Eden: An Evolutionary Sonic Ecosystem. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 133–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    McCormack, J.: Facing the Future: Evolutionary Possibilities for Human-Machine Creativity. In: The Art of Artificial Evolution: A Handbook on Evolutionary Art and Music, pp. 417–451. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    McCormack, J., Bown, O.: Life’s what you make: Niche construction and evolutionary art. In: Giacobini, M., Brabazon, A., Cagnoni, S., Di Caro, G.A., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Fink, A., Machado, P. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 528–537. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Miranda, E.R.: Granular synthesis of sounds by means of cellular automata. Leonardo 28(4), 297–300 (1995)CrossRefGoogle Scholar
  15. 15.
    Miranda, E.R.: Evolutionary music: breaking new ground. In: Composing Music with Computers. Focal Press (2001)Google Scholar
  16. 16.
    Miranda, E.R.: At the Crossroads of Evolutionary Computation and Music. Evolutionary Computation 12(2), 137–158 (2004)CrossRefGoogle Scholar
  17. 17.
    Miranda, E.R., Biles, A.: Evolutionary Computer Music. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Murray-Rust, D., Smaill, A., Edwards, M.: MAMA: An architecture for interactive musical agents. In: ECAI: European Conference on Artificial Intelligence, pp. 36–40 (2006)Google Scholar
  19. 19.
    Nechvatal, J.: Computer Virus Project 2.0, http://www.eyewithwings.net/nechvatal/virus2/virus20.html (accessed 6 October 2010)
  20. 20.
    Schnell, N., Borghesi, R., Schwarz, D., Bevilacqua, F., Müller, R.: FTM – Complex Data Structures for Max. In: Proceedings of the ICMC 2005, Barcelona (2005)Google Scholar
  21. 21.
    Schwarz, D.: Corpus-based concatenative synthesis. IEEE Signal Processing Magazine 24(2), 92–104 (2007)CrossRefGoogle Scholar
  22. 22.
    Wooldridge, M.: An Introduction to multiagent systems. Wiley & Sons, Chichester (2009)Google Scholar
  23. 23.
    Wulfhorst, R., Flores, L., Alvares, L., Vicari, R.: A multiagent approach for musical interactive systems. In: Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 584–591. ACM Press, New York (2003)CrossRefGoogle Scholar
  24. 24.
    Zwicker, E., Terhardt, E.: Analytical expressions for critical-band rate and critical bandwidth as a function of frequency. Journal of the Acoustical Society of America 68(5), 1523–1525 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Arne Eigenfeldt
    • 1
  • Philippe Pasquier
    • 2
  1. 1.School for the Contemporary ArtsSimon Fraser UniversityVancouverCanada
  2. 2.School for Interactive Arts and TechnologySimon Fraser UniversitySurreyCanada

Personalised recommendations