Combining Structural Analysis and Multi-Objective Criteria for Evolutionary Architectural Design

  • Jonathan Byrne
  • Michael Fenton
  • Erik Hemberg
  • James McDermott
  • Michael O’Neill
  • Elizabeth Shotton
  • Ciaran Nally
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6625)


This study evolves and categorises a population of conceptual designs by their ability to handle physical constraints. The design process involves a trade-off between form and function. The aesthetic considerations of the designer are constrained by physical considerations and material cost. In previous work, we developed a design grammar capable of evolving aesthetically pleasing designs through the use of an interactive evolutionary algorithm. This work implements a fitness function capable of applying engineering objectives to automatically evaluate designs and, in turn, reduce the search space that is presented to the user.


Pareto Front Evolutionary Design Multiobjective Evolutionary Algorithm Bridge Design Grammatical Evolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banzhaf, W.: Interactive evolution. In: Back, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, ch. C2.9, pp. 1–6. IOP Publishing Ltd., Oxford University Press (1997)Google Scholar
  2. 2.
    British Standards Institution: BS EN 338-2003: Structural Timber Strength Classes. BSI, London (2003)Google Scholar
  3. 3.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182–197 (2002)CrossRefGoogle Scholar
  4. 4.
    Fenton, M.: Analysis of Timber Structures Created Using A G.E-Based Architectural Design Tool. Master’s thesis, University College Dublin, Ireland (2010)Google Scholar
  5. 5.
    Frey, P.J.: MEDIT:interactive mesh visualization. 0 RT-0253, INRIA (December 2001),
  6. 6.
    Generative Components,
  7. 7.
    Gero, J.S.: Creativity, emergence and evolution in design. Knowledge-Based Systems 9(7), 435–448 (1996)CrossRefGoogle Scholar
  8. 8.
    Glaylord, E., Glaylord, C.: Structural engineering handbook. McGraw-Hill, New York (1979)Google Scholar
  9. 9.
    Grasshopper, Generative Modeling with Rhino,
  10. 10.
    Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using networkx. In: Proceedings of the 7th Python in Science Conference, Pasadena, CA USA, pp. 11–15 (2008)Google Scholar
  11. 11.
    Hoeffler, A., Leysner, U., Weidermann, J.: Optimization of the layout of trusses combining strategies based on Mitchels theorem and on biological principles of evolution. In: Proceeding of the 2nd Symposium on Structural Optimisation, Milan, Italy (1973)Google Scholar
  12. 12.
    Hornby, G.S.: Measuring, enabling and comparing modularity, regularity and hierarchy in evolutionary design. In: Proceedings of GECCO 2005 (2005)Google Scholar
  13. 13.
    Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings for physical design. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001, pp. 600–607. IEEE Press, Los Alamitos (2001)Google Scholar
  14. 14.
    Kicinger, R., Arciszewski, T., DeJong, K.: Evolutionary design of steel structures in tall buildings. Journal of Computing in Civil Engineering 19(3), 223–238 (2005)CrossRefGoogle Scholar
  15. 15.
    Kicinger, R., Arciszewski, T., Jong, K.D.: Evolutionary computation and structural design: A survey of the state-of-the-art. Computers and Structures 83(23-24), 1943–1978 (2005)CrossRefGoogle Scholar
  16. 16.
    Link to the bridge grammar,
  17. 17.
    McDermott, J., Byrne, J., Swafford, J.M., O’Neill, M., Brabazon, A.: Higher-order functions in aesthetic EC encodings. In: 2010 IEEE World Congress on Computational Intelligence, pp. 2816–2823. IEEE Press, Barcelona (2010)Google Scholar
  18. 18.
    O’Neill, M.: Automatic Programming in an Arbitrary Language: Evolving Programs with Grammatical Evolution. Ph.D. thesis, University Of Limerick, Ireland (2001)Google Scholar
  19. 19.
    O’Neill, M., McDermott, J., Swafford, J.M., Byrne, J., Hemberg, E., Shotton, E., McNally, C., Brabazon, A., Hemberg, M.: Evolutionary design using grammatical evolution and shape grammars: Designing a shelter. International Journal of Design Engineering (in press)Google Scholar
  20. 20.
    O’Reilly, U.M., Hemberg, M.: Integrating generative growth and evolutionary computation for form exploration. Genetic Programming and Evolvable Machines 8(2), 163–186 (2007), special issue on developmental systemsCrossRefGoogle Scholar
  21. 21.
    San Lee’s Free Finite Element Analysis,
  22. 22.
    Shea, K., Aish, R., Gourtovaia, M.: Towards integrated performance-driven generative design tools. Automation in Construction 14(2), 253–264 (2005)CrossRefGoogle Scholar
  23. 23.
    Shea, K., Smith, I., et al.: Improving full-scale transmission tower design through topology and shape optimization. Journal of Structural Engineering 132, 781 (2006)CrossRefGoogle Scholar
  24. 24.
    Takagi, H.: Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation. Proc. of the IEEE 89(9), 1275–1296 (2001)CrossRefGoogle Scholar
  25. 25.
    Topping, B., Leite, J.: Parallel genetic models for structural optimization. Engineering Optimization 31(1), 65–99 (1988)CrossRefGoogle Scholar
  26. 26.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jonathan Byrne
    • 1
  • Michael Fenton
    • 1
  • Erik Hemberg
    • 1
  • James McDermott
    • 1
  • Michael O’Neill
    • 1
  • Elizabeth Shotton
    • 1
  • Ciaran Nally
    • 1
  1. 1.Natural Computing Research & Applications GroupUniversity College DublinIreland

Personalised recommendations