What’s Happening in Semantic Web

... and What FCA Could Have to Do with It
  • Pascal Hitzler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6628)

Abstract

The Semantic Web [27] is gaining momentum. Driven by over 10 years of focused project funding in the US and the EU, Semantic Web Technologies are now entering application areas in industry, academia, government, and the open Web.

The Semantic Web is based on the idea of describing the meaning - or semantics - of data on the Web using metadata - data that describes other data - in the form of ontologies, which are represented using logic-based knowledge representation languages [26]. Central to the transfer of Semantic Web into practice is the Linked Open Data effort [7], which has already resulted in the publication, on the Web, of billions of pieces of information using ontology languages. This provides the basic data needed for establishing intelligent system applications on the Web in the tradition of Semantic Web Technologies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baader, F., Distel, F.: A finite basis for the set of EL-implications holding in a finite model. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 46–61. Springer, Heidelberg (2008)Google Scholar
  2. 2.
    Baader, F., Distel, F.: Exploring finite models in the description logic ELgfp. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS, vol. 5548, pp. 146–161. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Veloso, M.M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, IJCAI 2007, Hyderabad, India, January 6-12, pp. 230–235 (2007)Google Scholar
  4. 4.
    Baader, F., Sertkaya, B.: Applying formal concept analysis to description logics. In: Eklund, P. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 261–286. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Bendaoud, R., Napoli, A., Toussaint, Y.: Formal concept analysis: A unified framework for building and refining ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 156–171. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bendaoud, R., Napoli, A., Toussaint, Y.: A proposal for an interactive ontology design process based on formal concept analysis. In: Eschenbach, C., Grüninger, M. (eds.) Formal Ontology in Information Systems, Proceedings of the Fifth International Conference, FOIS 2008, Saarbrücken, Germany, October 31-November 3. Frontiers in Artificial Intelligence and Applications, vol. 183, pp. 311–323. IOS Press, Amsterdam (2008)Google Scholar
  7. 7.
    Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)CrossRefGoogle Scholar
  8. 8.
    Cho, W.C., Richards, D.: Ontology construction and concept reuse with formal concept analysis for improved web document retrieval. Web Intelligence and Agent Systems 5(1), 109–126 (2007)Google Scholar
  9. 9.
    Cimiano, P.: Ontology learning from text using corpus-derived formal contexts. In: Hitzler, P., Schärfe, H. (eds.) Conceptual Structures in Practice, pp. 199–222. Chapman & Hall/CRC Press (2009)Google Scholar
  10. 10.
    Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. J. Artif. Intell. Res (JAIR) 24, 305–339 (2005)MATHGoogle Scholar
  11. 11.
    Cimiano, P., Hotho, A., Stumme, G., Tane, J.: Conceptual knowledge processing with formal concept analysis and ontologies. In: Eklund, P.W. (ed.) ICFCA 2004. LNCS (LNAI), vol. 2961, pp. 189–207. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Curé, O.: Merging expressive ontologies using formal concept analysis. In: Meersman, R., Herrero, P., Dillon, T. (eds.) OTM 2009 Workshops. LNCS, vol. 5872, pp. 49–58. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Distel, F.: An approach to exploring description logic knowledge bases. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS, vol. 5986, pp. 209–224. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Ducrou, J., Eklund, P.: Faceted document navigation. In: Hitzler, P., Schärfe, H. (eds.) Conceptual Structures in Practice, pp. 225–244. Chapman & Hall/CRC (2009)Google Scholar
  15. 15.
    Euzenat, J., Shvaiko, P.: Ontology matching. Springer, Heidelberg (2007)MATHGoogle Scholar
  16. 16.
    Fang, K., Chang, C., Chi, Y.: Using formal concept analysis to leverage ontology-based acu-point knowledge system. In: Zhang, D. (ed.) ICMB 2008. LNCS, vol. 4901, pp. 115–121. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  17. 17.
    Fu, G., Cohn, A.G.: Utility ontology development with formal concept analysis. In: Eschenbach, C., Grüninger, M. (eds.) Formal Ontology in Information Systems, Proceedings of the Fifth International Conference, FOIS 2008, Saarbrücken, Germany, October 31-November 3. Frontiers in Artificial Intelligence and Applications, vol. 183, pp. 297–310. IOS Press, Amsterdam (2008)Google Scholar
  18. 18.
    Ganter, B., Stumme, G.: Creation and merging of ontology top-levels. In: Ganter, B., de Moor, A., Lex, W. (eds.) ICCS 2003. LNCS, vol. 2746, pp. 131–145. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  19. 19.
    Hacene, M.R., Fennouh, S., Nkambou, R., Valtchev, P.: Refactoring of ontologies: Improving the design of ontological models with concept analysis. In: 22nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2010, Arras, France, October 27-29, vol. 2, pp. 167–172. IEEE Computer Society, Los Alamitos (2010)CrossRefGoogle Scholar
  20. 20.
    Hacene, M.R., Huchard, M., Napoli, A., Valtchev, P.: A proposal for combining formal concept analysis and description logics for mining relational data. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 51–65. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Hacene, M.R., Napoli, A., Valtchev, P., Toussaint, Y., Bendaoud, R.: Ontology learning from text using relational concept analysis. In: Proceedings of the 2008 International MCETECH Conference on e-Technologies, pp. 154–163. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  22. 22.
    Hitzler, P.: Default reasoning over domains and concept hierarchies. In: Biundo, S., Frühwirth, T., Palm, G. (eds.) KI 2004. LNCS (LNAI), vol. 3238, pp. 351–365. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Hitzler, P.: Towards reasoning pragmatics. In: Janowicz, K., Raubal, M., Levashkin, S. (eds.) GeoS 2009. LNCS, vol. 5892, pp. 9–25. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  24. 24.
    Hitzler, P., van Harmelen, F.: A reasonable semantic web. Semantic Web 1(1-2), 39–44 (2010)Google Scholar
  25. 25.
    Hitzler, P., Krötzsch, M.: Querying formal contexts with answer set programs. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 260–273. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Hitzler, P., Krötzsch, M., Parsia, B., Patel-Schneider, P.F., Rudolph, S. (eds.): OWL 2 Web Ontology Language: Primer. W3C Proposed Recommendation (September 22, 2009), http://www.w3.org/TR/owl2-primer/
  27. 27.
    Hitzler, P., Krötzsch, M., Rudolph, S.: Foundations of Semantic Web Technologies. Chapman & Hall/CRC (2009)Google Scholar
  28. 28.
    Jain, P., Hitzler, P., Sheth, A.P., Verma, K., Yeh, P.Z.: Ontology alignment for linked open data. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 402–417. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  29. 29.
    Jain, P., Hitzler, P., Yeh, P.Z., Verma, K., Sheth, A.P.: Linked Data is Merely More Data. In: Brickley, D., Chaudhri, V.K., Halpin, H., McGuinness, D. (eds.) Linked Data Meets Artificial Intelligence, pp. 82–86. AAAI Press, Menlo Park (2010)Google Scholar
  30. 30.
    Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: Discovering shared conceptualizations in folksonomies. J. Web Sem. 6(1), 38–53 (2008)CrossRefGoogle Scholar
  31. 31.
    Jia, H., Newman, J., Tianfield, H.: A new formal concept analysis based learning approach to ontology building. In: Sicilia, M.-Á., Lytras, M.D. (eds.) Metadata and Semantics, Post-proceedings of the 2nd International Conference on Metadata and Semantics Research, MTSR 2007, Corfu Island in Greece, October 1-2, pp. 433–444. Springer, Heidelberg (2007)Google Scholar
  32. 32.
    Jiang, G., Pathak, J., Chute, C.G.: Formalizing ICD coding rules using formal concept analysis. Journal of Biomedical Informatics 42(3), 504–517 (2009)CrossRefGoogle Scholar
  33. 33.
    Kifer, M.: Rule interchange format: The framework. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 1–11. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  34. 34.
    Krötzsch, M., Maier, F., Krisnadhi, A.A., Hitzler, P.: A better uncle for OWL: Nominal schemas for integrating rules and ontologies. In: Proceedings of the 20th International World Wide Web Conference, WWW 2011, Hyderabad, India, March/April (to appear, 2011)Google Scholar
  35. 35.
    Li, G. y., Liu, S. p., Zhao, Y.: Formal concept analysis based ontology merging method. In: 2010 3rd IEEE International Conference on Computer Science and Information Technology (ICCSIT), pp. 279–282. IEEE, Los Alamitos (2010)Google Scholar
  36. 36.
    Manola, F., Miller, E. (eds.): Resource Description Framework (RDF). Primer. W3C Recommendation (February 10, 2004), http://www.w3.org/TR/rdf-primer/
  37. 37.
    Ning, L., Guanyu, L., Li, S.: Using formal concept analysis for maritime ontology building. International Forum on Information Technology and Applications 2, 159–162 (2010)Google Scholar
  38. 38.
    Rudolph, S.: Relational Exploration – Combining Description Logics and Formal Concept Analysis for Knowledge Specification. Universitätsverlag Karlsruhe (2007)Google Scholar
  39. 39.
    Rudolph, S., Krötzsch, M., Hitzler, P.: Quo vadis, CS? – on the (non)-impact of conceptual structures on the semantic web. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 464–467. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  40. 40.
    Rudolph, S., Völker, J.: A lexico-logical approach to ontology engineering. In: Pascal Hitzler, H.S. (ed.) Conceptual Structures in Practice, pp. 225–244. Chapman & Hall/CRC (2009)Google Scholar
  41. 41.
    Rudolph, S., Völker, J., Hitzler, P.: Supporting lexical ontology learning by relational exploration. In: Priss, U., Polovina, S., Hill, R. (eds.) ICCS 2007. LNCS (LNAI), vol. 4604, pp. 488–491. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  42. 42.
    Sertkaya, B.: Computing the hierarchy of conjunctions of concept names and their negations in a description logic knowledge base using formal concept analysis. In: Supplementary Proceedings of the 4th International Conference on Formal Concept Analysis, ICFCA 2006, Dresden, Germany (2006)Google Scholar
  43. 43.
    de Souza, K.X.S., Davis, J., de Medeiros Evangelista, S.R.: Aligning ontologies, evaluating concept similarities and visualizing results. Journal on Data Semantics V, 211–236 (2006)Google Scholar
  44. 44.
    Stumme, G., Maedche, A.: FCA-MERGE: Bottom-up merging of ontologies. In: Nebel, B. (ed.) Proceedings of the Seventeenth International Joint Conference on Artificial Intelligence, IJCAI 2001, Seattle, Washington, USA, August 4-10, pp. 225–234. Morgan Kaufmann, San Francisco (2001)Google Scholar
  45. 45.
    Tane, J., Cimiano, P., Hitzler, P.: Query-based multicontexts for knowledge base browsing: An evaluation. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS 2006. LNCS (LNAI), vol. 4068, pp. 413–426. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  46. 46.
    Völker, J.: Learning Expressive Ontologies. Studies on the Semantic Web, vol. 002. IOS Press, Amsterdam (2009)Google Scholar
  47. 47.
    Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology refinement. In: Main Conference Proceedings of the 2008 IEEE /WIC/ACM International Conference on Web Intelligence, WI 2008, Sydney, NSW, Australia, December 9-12. IEEE, Los Alamitos (2008)Google Scholar
  48. 48.
    Völker, J., Rudolph, S.: Lexico-logical acquisition of OWL DL axioms. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS (LNAI), vol. 4933, pp. 62–77. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  49. 49.
    Zhao, Y., Wang, X., Halang, W.: Ontology mapping based on rough formal concept analysis. In: Advanced International Conference on Telecommunications/International Conference on Internet and Web Applications and Services, p. 180 (2006)Google Scholar
  50. 50.
    Zhou, W., Liu, Z.T., Zhao, Y.: Ontology learning by clustering based on fuzzy formal concept analysis. In: Annual International of Computer Software and Applications Conference, vol. 1, pp. 204–210 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Pascal Hitzler
    • 1
  1. 1.Kno.e.sis CenterWright State UniversityDaytonUSA

Personalised recommendations