Computational Differential Geometry Contributions of theWelfenlab to GRK 615

  • Franz-Erich Wolter
  • Philipp Blanke
  • Hannes Thielhelm
  • Alexander Vais
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 57)


This chapter presents an overview on contributions of the Welfenlab to GRK 615. Those contributions partial to computational differential geometry include computations of geodesic medial axis, cut locus, geodesic Voronoi diagrams, (“shortest”) geodesics joining two given points, “focal sets and conjugate loci” in Riemannian manifolds and the application of the medial axis on metal forming simulation. The chapter includes also the computation of Laplace spectra of surfaces, solids and images and the application of those Laplace spectra to recognize the respective objects in large collections of surfaces, solids and images. Beyond that this article touches also on the origin of the afore-mentioned works including research done at theWelfenlab as well as works that can be traced back to the graduate studies of the first author.


Riemannian Manifold IEEE Computer Society Voronoi Diagram Medial Axis Complete Riemannian Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Algaier, R.: Schnelle dynamische Voronoi-Diagramme mit History-DAG. Diplomarbeit, Leibniz Universität Hannover (December 2009)Google Scholar
  2. 2.
    Allgower, E.L., Georg, K.: Classics in Applied Mathematics. In: Introduction to Numerical Continuation Methods, vol. 45, SIAM, Philadelphia (2003)CrossRefGoogle Scholar
  3. 3.
    Altschaffel, T.: Untersuchungen zur Spektralanalyse von Freiformflächen. Diplomarbeit, Leibniz Universität Hannover (May 1999)Google Scholar
  4. 4.
    Amenta, N., Kolluri, R.K.: The medial axis of a union of balls. J. Computational Geometry 20, 25–37 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Baer, M.: Berechnung Medialer Achsen von einfach berandeten zusammenhängenden Teilstücken parametrisierter Flächen. Diplomarbeit, Leibniz Universität Hannover (December 1998); Available as Welfenlab Report 5Google Scholar
  6. 6.
    Beneker, W.: Rechnergestützte Simulation des Füllverhaltens beim Gesenkschmieden. In: Fortschritt-Berichte VDI Reihe, vol. 20(187). VDI (1995)Google Scholar
  7. 7.
    Berchtold, S., Böhm, C., Braunmüller, B., Keim, D.A., Kriegel, H.-P.: Fast parallel similarity search in multimedia databases. In: SIGMOD 1997: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, pp. 1–12. ACM Press, New York (1997)CrossRefGoogle Scholar
  8. 8.
    Berchtold, S., Keim, D.A., Kriegel, H.-P.: The X-tree: An index structure for high-dimensional data. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) Proceedings of the Twenty-Second International Conference on Very Large Data Bases, Mumbai (Bombay), India, September 1996, pp. 28–39. Morgan Kaufmann Publishers, Los Altos (1996)Google Scholar
  9. 9.
    Biglari, F.R., O’Dowd, N.P., Fenner, R.T.: Optimum design of forging dies using fuzzy logic in conjunction with the backward deformation method. International Journal of Machine Tools and Manufacture 38(8), 981–1000 (1998)CrossRefGoogle Scholar
  10. 10.
    Blanke, P., Wolter, F.-E.: Fast inverse forging simulation via medial axis transform. In: Proceedings of the 2007 International Conference on Cyberworlds, NASAGEM Workshop, pp. 396–403. IEEE Computer Society, Washington (2007)Google Scholar
  11. 11.
    Böttcher, G.: Medial axis and haptics. Diplomarbeit, Leibniz Universität Hannover (October 2004)Google Scholar
  12. 12.
    Bramley, A.N.: UBET and TEUBA: Fast methods for forging simulation and preform design. Journal of Materials Processing 116 (2001)Google Scholar
  13. 13.
    Culver, T.: Computing the medial axis of a polyhedron reliably and efficiently. PhD Thesis, Department of Computer Science, University of North Carolina, Chapel Hill (2000)Google Scholar
  14. 14.
    Dey, T.K., Zhao, W.: Approximating the medial axis from the Voronoi diagram with a convergence guarantee. Algorithmica 38, 179–200 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)zbMATHGoogle Scholar
  16. 16.
    Garcia, C.B., Zangwill, W.J.: Pathways to Solutions, Fixed Points, and Equilibria. Prentice-Hall, Englewood Cliffs (1984)Google Scholar
  17. 17.
    Gordon, C., Webb, D.L., Wolpert, S.: One cannot hear the shape of a drum. Bull. Amer. Math. Soc. 26, 134–138 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Naß, H.: Computation of medial sets in Riemannian manifolds. PhD Thesis, Leibniz Universität Hannover (2007)Google Scholar
  19. 19.
    Howind, A.: Untersuchungen und Berechnungen zur Medialen Achse im Raum. Diplomarbeit, Leibniz Universität Hannover (October 1998)Google Scholar
  20. 20.
    Howind, T.: Spektralanalyse von berandeten Gebieten. Diplomarbeit, Leibniz Universität Hannover (September 1998)Google Scholar
  21. 21.
    Hwang, S.M., Kobayashi, S.: Preform design in disk forging. International Journal of Machine Tool Design & Research 26(3), 231–243 (1986)CrossRefGoogle Scholar
  22. 22.
    Kunze, R., Wolter, F.-E., Rausch, T.: Geodesic Voronoi diagrams on parametric surfaces. In: Proceedings of CGI 1997, vol. 6, IEEE Computer Society, Los Alamitos (1997); Available as Welfenlab Report 2 Google Scholar
  23. 23.
    Mathieu, H.: Ein Beitrag zur Auslegung der Stadienfolge beim Gesenkschmieden mit Grat. Fortschritt-Berichte VDI-Reihe 2, 213, VDI (1991)Google Scholar
  24. 24.
    McKean, H.P., Singer, I.M.: Curvature and the eigenvalues of the Laplacian. J. Diff. Geom. 1, 43–69 (1967)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Michael, M.: Konstruktionsbegleitende Modellierung von Schmiedeprozessen. PhD Thesis, Leibniz Universität Hannover (1999)Google Scholar
  26. 26.
    Naß, H., Wolter, F.-E., Doğan, C., Thielhelm, H.: Medial axis (inverse) transform in complete 3-dimensional Riemannian manifolds. In: Proceedings of the 2007 International Conference on Cyberworlds, NASAGEM Workshop, pp. 386–395. IEEE Computer Society, Washington (2007)Google Scholar
  27. 27.
    Naß, H., Wolter, F.-E., Thielhelm, H., Doğan, C.: Computation of geodesic voronoi diagrams in 3-space using medial equations. In: Proceedings of the 2007 International Conference on Cyberworlds, NASAGEM Workshop, pp. 376–385. IEEE Computer Society, Washington (2007)Google Scholar
  28. 28.
    Niethammer, M., Reuter, M., Wolter, F.-E., Bouix, S., Peinecke, N., Koo, M.-S., Shenton, M.E.: Global medical shape analysis using the laplace-beltrami spectrum. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 850–857. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  29. 29.
    Obydenna, N.: Implementierung einer Datenstruktur für simpliziale 3D-Netze. Studienarbeit, Leibniz Universität Hannover (April 2009)Google Scholar
  30. 30.
    Peinecke, N.: Eigenwertspektren des Laplaceoperators in der Bilderkennung. PhD Thesis, Leibniz Universität Hannover (2006)Google Scholar
  31. 31.
    Peinecke, N., Wolter, F.-E.: Mass density Laplace-spectra for image recognition. In: Proceedings of the 2007 International Conference on Cyberworlds, NASAGEM Workshop, pp. 409–416. IEEE Computer Society, Washington (2007)Google Scholar
  32. 32.
    Peinecke, N., Wolter, F.-E., Reuter, M.: Laplace-spectra as fingerprints for image recognition. Computer-Aided Design 6(39), 460–476 (2007)CrossRefGoogle Scholar
  33. 33.
    Postnikov, M.M.: The Variational Theory of Geodesics. Saunders, Philadelphia (1967)zbMATHGoogle Scholar
  34. 34.
    Rausch, T.: Analysis and computation of the geodetic medial axis of bordered surface patches (Untersuchungen und Berechnungen zur geodätischen Medialen Achse bei Berandeten Flächenstücken). PhD Thesis, Leibniz Universität Hannover (1999)Google Scholar
  35. 35.
    Rausch, T., Wolter, F.-E., Sniehotta, O.: Computation of medial curves in surfaces. In: Proceedings of Conference on the Mathematics of Surfaces VII, pp. 43–68. Institute of Mathematics and Applications (1996); Also available as Welfenlab Report 1Google Scholar
  36. 36.
    Reuter, M., Wolter, F.-E., Peinecke, N.: Laplace–Beltrami spectra as shape DNA of surfaces and solids. Computer-Aided Design 4(38), 342–366 (2006)CrossRefGoogle Scholar
  37. 37.
    Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace–Beltrami operators for shape analysis and segmentation. Computers & Graphics 33(3), 381–390 (2009)CrossRefGoogle Scholar
  38. 38.
    Reuter, M., Niethammer, M., Wolter, F.-E., Bouix, S., Peinecke, N., Ko, M.-S., Shenton, M.E.: Global medical shape analysis using the volumetric laplace spectrum. In: Proceedings of the 2007 International Conference on Cyberworlds, NASAGEM Workshop, pp. 417–426. IEEE Computer Society, Washington (2007)Google Scholar
  39. 39.
    Reuter, M., Wolter, F.-E., Shenton, M., Niethammer, M.: Laplace–Beltrami eigenvalues and topological features of eigenfunctions for statistical shape analysis. Computer-Aided Design 41(10), 739–755 (2009)CrossRefGoogle Scholar
  40. 40.
    Sherbrooke, E.C.: 3D shape interrogation by medial axis transform. PhD Thesis, Department of Ocean Engineering. MIT, Boston (1995)Google Scholar
  41. 41.
    Thielhelm, H.: Geodätische Voronoi Diagramme. Diplomarbeit, Leibniz Universität Hannover (May 2007)Google Scholar
  42. 42.
    Wienströer, M.: Konstruktionsintegrierte Prozessimulation der Stadienfolge beim Schmieden mittels Rückwärtssimulation. PhD Thesis, Leibniz Universität Hannover (2004)Google Scholar
  43. 43.
    Wolter, F.-E.: Interior metric, shortest paths and loops in Riemannian manifolds with not necessarily smooth boundary. Diplomarbeit, Freie Universität Berlin (1979)Google Scholar
  44. 44.
    Wolter, F.-E.: Distance function and cut loci on a complete Riemannian manifold. Arch. Math. 1(32), 92–96 (1979)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Wolter, F.-E.: Cut loci in bordered and unbordered Riemannian manifolds. PhD Thesis, Technical University of Berlin (1985)Google Scholar
  46. 46.
    Wolter, F.-E.: Cut locus & medial axis in global shape interrogation & representation. MIT Design Laboratory Memorandum 92-2 and MIT National Sea Grant Library Report, 1992. MIT (revised version) (December 1993)Google Scholar
  47. 47.
    Wolter, F.-E.: Shape and image cognition (Re)-construction and compression via tools from differential geometry. Keynote Lecture presented at CGI 2010, Singapore (2010),
  48. 48.
    Wolter, F.-E., Cutchin, S., Hausman, T., Johnson, B., Goehring, S., Lambers, L.: Project Riemann source code (1988), Scholar
  49. 49.
    Wolter, F.-E., Friese, K.-I.: Local and global geometric methods for analysis interrogation, reconstruction, modification and design of shape. In: Proceedings of Computer Graphics International, Geneva, Switzerland, pp. 137–151. IEEE Computer Society (2000); Also available as Welfenlab Report 3Google Scholar
  50. 50.
    Wolter, F.-E., Reuter, M., Peinecke, N.: Geometric modeling for engineering applications. In: Stein, E., de Borst, R., Hughes, T.J.R. (eds.) Encyclopedia of Computational Mechanics. Part 1: Fundamentals, ch. 16. John Wiley & Sons, Chichester (2007)Google Scholar
  51. 51.
    Xu, G.: Discrete Laplace–Beltrami operators and their convergence. Computer Aided Geometric Design 21, 767–784 (2004)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Franz-Erich Wolter
    • 1
  • Philipp Blanke
    • 1
  • Hannes Thielhelm
    • 1
  • Alexander Vais
    • 1
  1. 1.Division of Computer GraphicsLeibniz Universität HannoverHannoverGermany

Personalised recommendations