Advertisement

Thermo-Hydro-Mechanical Modeling of Coupled Processes in Clay Materials

  • Jobst Maßmann
  • Gesa Ziefle
  • Martin Kohlmeier
  • Werner Zielke
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 57)

Abstract

Geotechnical problems are characterized by the existence of a great variety of coupled processes and non-linear effects. To focus on problems arising in the field of radioactive waste disposal, the time-dependent behavior in underground excavations in low permeable materials is investigated. For this purpose model approaches for thermo-hydro-mechanical interactions in partially saturated porous media including thermal and moisture content dependent expansion have been developed and implemented into a finite element code. As coupling phenomena the Terzaghi’s effective stress concept and themass conservation of the liquid phase in a deformable porous media are considered. The resulting numerical model is verified with analytical solutions and validated with experimental data. An extension of this model is concerned with the non-linear structural behavior of low permeable material. For this, a purely mechanical model for various kinds of material is presented, which incorporates initial stresses. Finally, the long term behavior of an excavation is analyzed in detail and compared to the corresponding long term measurements of a mine-by experiment conducted in argillite at the Tournemire test site in France. Therefore damage, drying induced shrinkage and anisotropic deformation dependent permeability are considered.

Keywords

Porous Medium Radioactive Waste Pore Water Pressure Couple Process Initial Porosity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Barlag, C.: Adaptive Methoden zur Modellierung von Stofftransport im Kluftgestein. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, Report No. 52 (1997)Google Scholar
  2. 2.
    Barr, D., Birkhölzer, J., Rutqvist, J., Sonnenthal, E.: Draft Description for DECOVALEXTHMC. Task D: Long-Term Permeability/Porosity Changes in EDZ and Near Field, due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems. REV02, Office of Repository Development, U.S. Department of Energy; Earth Sciences (December 2004)Google Scholar
  3. 3.
    Bazant, Z.P. (ed.): Mathematical Modelling of Creep and Shrinkage of Concrete. John Wiley & Sons, Chichester (1989)Google Scholar
  4. 4.
    Bear, J.: Dynamic of Fluids in Porous Media. Elsevier, New York (1972)Google Scholar
  5. 5.
    BfS. Endlagerung radioaktiver Abfälle als nationale Aufgabe. Technical Report, Bundesamt für Strahlenschutz, Salzgitter, Germany (2005)Google Scholar
  6. 6.
    BGR. Endlagerung radioaktiver Abfälle in Deutschland. Untersuchung und Bewertung von Regionen mit potenziell geeigneten Wirtsgesteinsformationen. Technical Report, Federal Institute for Geosciences and Natural Resources (BGR) (April 2007)Google Scholar
  7. 7.
    Birkholzer, J., Rutqvist, J., Sonnenthal, E., Barr, D.: DECOVALEX-THMC. Task D: Long- Term Permeability/Porosity Changes in EDZ and Near Field due to THM and THC Processes in Volcanic and Crystalline-Bentonite Systems. Status Report October 2005, Earth Sciences Division, LBNL, USA; Office of Repository Development, DOE, USA, Berkeley (2005)Google Scholar
  8. 8.
    Blümling, P., Bernier, F., Lebon, P., Martin, C.D.: The excavation damaged zone in clay formations time-dependent behaviour and influence on performance assessment. Physics and Chemistry of the Earth 32, 588–599 (2007)Google Scholar
  9. 9.
    Bowen, R.M.: Incompressible porous media models by use of theory of mixtures. International Journal of Engineering Science 18, 1129–1148 (1980)zbMATHCrossRefGoogle Scholar
  10. 10.
    Cabrera, J.: Caractérisation des discontinuités en milieu argileux (station expérimentale de tournemire). Scientific and Technical Report, Institute of Radioprotection and Nuclear Safety (IRSN), France (2002)Google Scholar
  11. 11.
    Chiarelli, A.S., Shao, J.F., Hoteit, N.: Modeling of elastoplastic damage behavior of a claystone. International Journal of Plasticity 19, 23–45 (2003)zbMATHCrossRefGoogle Scholar
  12. 12.
    Daupley, X.: Etude du potentiel de l’eau interstitielle d’une roche argileuse et de relations entre ses propriétés hydriques et mécaniques – Application aux argilites du Toarcien dans la région de Tournemire (Aveyron). PhD Thesis, Paris School of Mines (1997)Google Scholar
  13. 13.
    Davis, R.O., Selvadurai, A.P.S.: Elasticity and Geomechanics. Cambridge University Press, Cambridge (1996)Google Scholar
  14. 14.
    de Boer, R.: Development of porous media theories – A brief historical review. Transport in Porous Media 9, 155–164 (1992)CrossRefGoogle Scholar
  15. 15.
    Ehlers, W.: Foundations of multiphasic and porous materials. In: Ehlers, W., Bluhm, J. (eds.) Porous Media. Springer, Berlin (2002)Google Scholar
  16. 16.
    Eipper, G.: Theorie und Numerik finiter elastischer Deformationen in fluidgesättigten porösen Festkörpern. PhD Thesis, Institut für Mechanik der Universität Stuttgart (1998)Google Scholar
  17. 17.
    Fisher, L.R., Israelachvili, J.N.: Direct experimental verification of the Kelvin equation for capillary condensation. Nature 277, 548–549 (1979)CrossRefGoogle Scholar
  18. 18.
    Flügge, S. (ed.): Die nicht-linearen Feldtheorien der Mechanik. Handbuch der Physik, vol. III/3. Springer, Berlin (1965)Google Scholar
  19. 19.
    Habbar, A.: Direkte und inverse Modellierung reaktiver Transportprozesse in klüftig-porösen Medien. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, Report No. 65 (2001)Google Scholar
  20. 20.
    Helmig, R.: Theorie und Numerik der Mehrphasenströmungen in geklüftet-porösen Medien. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, Report No. 34 (1993)Google Scholar
  21. 21.
    Hudson, J.A., Stephansson, O., Andersson, J., Tsang, C.-F., Jing, L.: Coupled T-H-M issues relating to radioactive waste repository design and performance. International Journal of Rock Mechanics and Mining Science 38, 143–161 (2001)CrossRefGoogle Scholar
  22. 22.
    IAEA. Geological disposal of radioactive waste: Safety requirements. Technical Report WSR- 4, International Atomic Energy Agency (IAEA), Vienna (2006)Google Scholar
  23. 23.
    Ju, J.W.: On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects. International Journal of Solids and Structures 25(7), 803–833 (1989)zbMATHCrossRefGoogle Scholar
  24. 24.
    Kaiser, R.: Gitteradaption für die Finite-Elemente-Modellierung gekoppelter Prozesse in geklüftet porösen Medien. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, Report No. 63 (2001)Google Scholar
  25. 25.
    Kantani, K.-I.: Stereological determination of structural anisotropy. International Journal of Engineering Science 22(5), 531–546 (1984)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kelsall, P.C., Case, J.B., Chabannes, C.R.: Evaluation of excavation-induced changes in rock permeability. International Journal of Rock Mechanics and Mining Science 21(3), 123–135 (1984)CrossRefGoogle Scholar
  27. 27.
    Khan, A.S., Huang, S.: Continuum Theory of Plasticity. John Wiley & Sons, New York (1995)zbMATHGoogle Scholar
  28. 28.
    Kohlmeier, M.: Coupling of thermal, hydraulic and mechanical processes for geotechnical simulations of partially saturated porous media. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Leibniz Universität Hannover, Report No. 72 (2006)Google Scholar
  29. 29.
    Kolditz, O.: Stoff- und Wärmetransport im Kluftgestein. Habilitation, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, Report No. 47 (1996)Google Scholar
  30. 30.
    Kröhn, K.-P.: Simulation von Transportvorgängen im klüftigen Gestein mit der Methode der Finiten Elemente. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, Report No. 29 (1991)Google Scholar
  31. 31.
    Lege, T.: Modellierung des Kluftgesteins als geologische Barriere für Deponien. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, Report No. 45 (1995)Google Scholar
  32. 32.
    Lemaitre, J.: A Course on Damage Mechanics. Springer, Berlin (1992)zbMATHGoogle Scholar
  33. 33.
    Lemaitre, J., Desmorat, R.: Engineering Damage Mechanics. Ductile, Creep and Brittle Failures. Springer, Berlin (2005)Google Scholar
  34. 34.
    Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media. John Wiley & Sons, Chichester (1998)zbMATHGoogle Scholar
  35. 35.
    Liakopoulos, A.: Retention and distribution of moisture in soils after infiltration has ceased. Bulletin of the International Association for Scientific Hydrology 10, 58–69 (1965)CrossRefGoogle Scholar
  36. 36.
    Lu, N., Likos, W.J.: Unsaturated Soil Mechanics. John Wiley & Sons, New Jersey (2004)Google Scholar
  37. 37.
    Marschall, P., Fukaya, M., Croise, J., Yamamoto, S., Mayer, G.: Project Report 00-20 GMT/IR 00-01: Laboratory data compilation report. Technical Report, National Cooperative for the Disposal of Radioactive Waste, NAGRA (2001)Google Scholar
  38. 38.
    Maßmann, J.: Modeling of excavation induced coupled hydraulic-mechanical processes in claystone. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Leibniz Universität Hannover, Report No. 77 (2009)Google Scholar
  39. 39.
    Matray, J.M., Savoye, S., Cabrera, J.: Desaturation and structure relationships around drifts excavated in the well-compacted Tournemire’s argillite (Aveyron, France). Engineering Geology 90, 1–16 (2007)CrossRefGoogle Scholar
  40. 40.
    Muhunthan, B., Chameau, J.L.: Void fabric tensor and ultimate state surface of soils. Journal of Geotechnical and Geoenvironmental Engineering 123(2), 173–181 (1997)CrossRefGoogle Scholar
  41. 41.
    NAGRA. Project opalinus clay. Technical report, National Cooperative for the Disposal of Radioactive Waste (2002)Google Scholar
  42. 42.
    Narasimhan, T.N., Witherspoon, P.A.: Numerical model for saturated-unsaturated flow in deformable porous media. Water Resources Research 14, 1017–1034 (1978)CrossRefGoogle Scholar
  43. 43.
    Niandou, H., Shao, J.F., Henry, J.P., Fourmaintraux, D.: Laboratory investigation of the mechanical behaviour of Tournemire shale. International Journal of Rock Mechanics and Mining Science 34(1), 3–16 (1997)CrossRefGoogle Scholar
  44. 44.
    Ortiz, M.: A constitutive theory for the inelastic behaviour of concrete. Mechanics of Material 4, 67–93 (1985)CrossRefGoogle Scholar
  45. 45.
    Ratke, R., Kolditz, O., Zielke, W.: ROCKFLOW-DM2 – 3-D Dichteströmungsmodell. Technical Report, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universit ät Hannover (1996)Google Scholar
  46. 46.
    Rejeb, A., Cabrera, J.: Description for Task C, Excavation Disturbed Zone (EDZ) in the argillaceous Tournemire site (France). Technical Report, Institute of Radioprotection and Nuclear Safety (IRSN), France (2004)Google Scholar
  47. 47.
    Rejeb, A., Cabrera, J.: Time-dependent evolution of the excavation damaged zone in the argillaceous Tournemire site (France). In: Xu, W. (ed.) Proceedings of the 2nd International Conference on Coupled T-H-M-C Processes in Geosystems and Engineering (GeoProc 2006), Nanjing, P.R. China, HoHai University (2006)Google Scholar
  48. 48.
    Rejeb, A., Slimane, K.B., Cabrera, J., Matray, J.M., Savoye, S.: Hydro-mechanical response of the Tournemire argillite to the excavation of underground openings: Unsaturated zones and mine-by-test experiment. In: Shao, J.F., Burlion, N. (eds.) Thermo-Hydromechanical and Chemical Coupling in Geomaterials and Applications: Proceedings of the 3rd International Symposium GeoProc 2008, pp. 649–656. John Wiley & Sons, Chichester (2008)Google Scholar
  49. 49.
    Rejeb, A., Stephansson, O.: DECOVALEX IV THMC. Excavation Damaged Zone (EDZ) in the Argillaceous Tournemire Site (France), Report of Task C1 (May 2005); Institute of Radioprotection and Nuclear Safety, France; GeoForschungsZentrum-Potsdam, Germany (2006)Google Scholar
  50. 50.
    Romero, E., Castellanos, E.: Project Report 04-07 GMT/IR 03-03: Complementary tests on compacted sand/bentonite/lead nitrate buffer material for the GMT emplacement project. Technical Report, National Cooperative for the Disposal of Radioactive Waste, NAGRA (2004)Google Scholar
  51. 51.
    Romero, E., Castellanos, E., Alonso, E.E.: Project Report 02-24 GMT/IR 02-01: Laboratory tests on compacted sand/bentonite/lead nitrate buffer material for the GMT emplacement project. Technical Report, National Cooperative for the Disposal of RadioactiveWaste, NAGRA (2003)Google Scholar
  52. 52.
    Romero, E., Garcia, I., Alonso, E.E.: Project Report 03-03 GMT/IR 02-02: Laboratory gas tests on compacted sand-bentonite buffer material used in the GMT in-situ emplacement. Technical report, National Cooperative for the Disposal of Radioactive Waste, NAGRA (2003)Google Scholar
  53. 53.
    Rouabhi, A., Tijani, M., Rejeb, A.: Triaxial behaviour of transversely isotropic materials application to sedimentary rocks. International Journal for Numerical and Analytical Methods in Geomechanics (2006)Google Scholar
  54. 54.
    Schrefler, B.A., Zhan, X.: A fully coupled model for water flow and air flow in deformable porous media. Water Resources Research 190(29), 155–167 (1993)CrossRefGoogle Scholar
  55. 55.
    Shao, H.: Simulation von Strömungs- und Transportvorgängen in geklüftet porösen Medien mit gekoppelten Finite-Elemente- und Rand-Element-Methoden. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen imBauwesen, Universität Hannover, Report No. 37 (1994)Google Scholar
  56. 56.
    Snow, D.T.: Parallel plate model of fractured permeable media. PhD Thesis, University of California, Berkeley (1965)Google Scholar
  57. 57.
    Snow, D.T.: Anisotropic permeability of fractured media. Water Resources Research 5(6), 1273–1289 (1969)CrossRefGoogle Scholar
  58. 58.
    Thorenz, C.: Model adaptive simulation of multiphase and density driven flow in fractured and porous media. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, Report No. 62 (2001)Google Scholar
  59. 59.
    Tikhomirov, D.: Theorie und Finite-Element-Methode für die Schädigungsbeschreibung in Beton und Stahlbeton. PhD Thesis, Institut für Baumechanik und Numerische Mechanik, Universität Hannover (2000)Google Scholar
  60. 60.
    Truesdell, C., Toupin, R.A.: The classical field theories. In: Flügge, S. (ed.) Handbuch der Physik, vol. III/1, pp. 226–902. Springer, Berlin (1960)Google Scholar
  61. 61.
    Tsang, C.-F., Bernier, F., Davies, C.: Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays - in the context of radioactive waste disposal. International Journal of Rock Mechanics and Mining Science 42, 109–125 (2005)CrossRefGoogle Scholar
  62. 62.
    Valés, F., Nguyen Minh, D., Gharbi, H., Rejeb, A.: Experimental study of the influence of the degree of saturation on physical and mechanical properties in Tournemire shale (France). Appl. Clay Sci. 26, 197–207 (2004)CrossRefGoogle Scholar
  63. 63.
    von Terzaghi, K.: Theoretical Soil Mechanics, 7th edn. John Wiley & Sons, New York (1954)Google Scholar
  64. 64.
    Wittke, W.: Felsmechanik. Grundlagen für wirtschaftliches Bauen im Fels. Springer, Berlin (1984)Google Scholar
  65. 65.
    Wollrath, J.: Ein Strömungs- und Transportmodell für klüftiges Gestein und Untersuchungen zu homogenen Ersatzsystemen. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Universität Hannover, Report No. 28 (1990)Google Scholar
  66. 66.
    Zhang, J., Standifird, W.B., Roegiers, J.-C., Zhang, Y.: Stress-dependent fluid flow and permeability in fractured media: from lab experiments to engineering applications. Rock Mechanics and Rock Engineering 40(1), 3–21 (2007)CrossRefGoogle Scholar
  67. 67.
    Ziefle, G.: Modeling aspects of coupled hydraulic-mechanical processes in clay material. PhD Thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen, Leibniz Universität Hannover, Report No. 74 (2008)Google Scholar
  68. 68.
    Zienkiewicz, O.C., Xie, Y.M., Schrefler, B.A., Ledesma, A., Bicanic, N.: Static and dynamic behaviour of soils: A rational approach to quantitative solutions, II. Semi-saturated problems. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 429, 11–21 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Jobst Maßmann
    • 1
  • Gesa Ziefle
    • 2
  • Martin Kohlmeier
    • 3
  • Werner Zielke
    • 4
  1. 1.Federal Institute for Geosciences and Natural Resources (BGR)HannoverGermany
  2. 2.Erdwärme-Messtechnik GmbHÜberseestadt - NewportBremenGermany
  3. 3.Institute of Structural AnalysisLeibniz Universität HannoverHannoverGermany
  4. 4.Institute of Fluid Mechanics and Environmental Physics in Civil EngineeringLeibniz Universität HannoverHannoverGermany

Personalised recommendations