Concurrent Composition in the Bounded Quantum Storage Model

  • Dominique Unruh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6632)


We define the BQS-UC model, a variant of the UC model, that deals with protocols in the bounded quantum storage model. We present a statistically secure commitment protocol in the BQS-UC model that composes concurrently with other protocols and an (a-priori) polynomially-bounded number of instances of itself. Our protocol has an efficient simulator which is important if one wishes to compose our protocol with protocols that are only computationally secure. Combining our result with prior results, we get a statistically BQS-UC secure constant-round protocol for general two-party computation without the need for any setup assumption.


Bounded quantum storage composability two-party computation 


  1. 1.
    Ben-Or, M., Mayers, D.: General security definition and composability for quantum & classical protocols (September 2004),
  2. 2.
    Bennett, C.H., Brassard, G.: Quantum cryptography: Public-key distribution and coin tossing. In: IEEE International Conference on Computers, Systems and Signal Processing 1984, pp. 175–179. IEEE Computer Society, Los Alamitos (1984)Google Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.H.: Practical quantum oblivious transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 351–366. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS 2001, pp. 136–145. IEEE Computer Society, Los Alamitos (2001), full and revised version is [5]Google Scholar
  5. 5.
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. IACR ePrint Archive (January 2005), full and revised version of [4],
  6. 6.
    Damgård, I., Fehr, S., Salvail, L., Schaffner, C.: Cryptography in the bounded quantum-storage model. In: FOCS 2005, pp. 449–458 (2005), a full version
  7. 7.
    Dziembowski, S., Maurer, U.: On generating the initial key in the bounded-storage model. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 126–137. Springer, Heidelberg (2004), CrossRefGoogle Scholar
  8. 8.
    Fehr, S., Schaffner, C.: Composing quantum protocols in a classical environment. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 350–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999), full version MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008), Google Scholar
  11. 11.
    Kilian, J.: Founding cryptography on oblivious transfer. In: STOC 1988, pp. 20–31. ACM, New York (1988)CrossRefGoogle Scholar
  12. 12.
    König, R.,Wehner, S.,Wullschleger, J.: Unconditional security from noisy quantum storage. arXiv:0906.1030v2 [quant-ph] (June 2009) Google Scholar
  13. 13.
    Mayers, D.: Unconditionally Secure Quantum Bit Commitment is Impossible. Physical Review Letters 78(17), 3414–3417 (1997), CrossRefGoogle Scholar
  14. 14.
    Unruh, D.: Simulatable security for quantum protocols (September 2004),
  15. 15.
    Unruh, D.: Universally composable quantum multi-party computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 486–505. Springer, Heidelberg (2010), preprint on arXiv:0910.2912 [quant-ph] CrossRefGoogle Scholar
  16. 16.
    Unruh, D.: Concurrent composition in the bounded quantum storage model. IACR ePrint 2010/229 (February 2011), full version of this paper Google Scholar
  17. 17.
    Wehner, S., Wullschleger, J.: Composable security in the bounded-quantum-storage model. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 604–615. Springer, Heidelberg (2008), CrossRefGoogle Scholar
  18. 18.
    Wolf, S., Wullschleger, J.: Oblivious transfer is symmetric. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 222–232. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Wullschleger, J.: Oblivious-Transfer Amplification. Ph.D. thesis, ETH Zurich (March 2007), arXiv:cs/0608076v3 [cs.CR]Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Dominique Unruh
    • 1
  1. 1.Saarland UniversityGermany

Personalised recommendations