Advertisement

Towards a Game Theoretic View of Secure Computation

  • Gilad Asharov
  • Ran Canetti
  • Carmit Hazay
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6632)

Abstract

We demonstrate how Game Theoretic concepts and formalism can be used to capture cryptographic notions of security. In the restricted but indicative case of two-party protocols in the face of malicious fail-stop faults, we first show how the traditional notions of secrecy and correctness of protocols can be captured as properties of Nash equilibria in games for rational players. Next, we concentrate on fairness. Here we demonstrate a Game Theoretic notion and two different cryptographic notions that turn out to all be equivalent. In addition, we provide a simulation based notion that implies the previous three. All four notions are weaker than existing cryptographic notions of fairness. In particular, we show that they can be met in some natural setting where existing notions of fairness are provably impossible to achieve.

Keywords

Utility Function Nash Equilibrium Secure Computation Subgame Perfect Equilibrium Correct Output 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abraham, I., Dolev, D., Gonen, R., Halpern, J.Y.: Distributed Computing Meets Game Theory: Robust Mechanisms for Rational Secret Sharing and Multiparty Computation. In: PODC, pp. 53–62 (2006)Google Scholar
  2. 2.
    Asharov, G., Canetti, R., Hazay, C.: Towards a Game Theoretic View of Secure Computation (full version) (in ePrint)Google Scholar
  3. 3.
    Asharov, G., Lindell, Y.: Utility Dependence in Correct and Fair Rational Secret Sharing. Journal of Cryptology 24(1), 157–202 (2011)zbMATHCrossRefGoogle Scholar
  4. 4.
    Beaver, D., Goldwasser, S.: Multiparty computation with faulty majority. In: 30th FOCS, pp. 468–473 (1989)Google Scholar
  5. 5.
    Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols. Journal of Cryptology 13(1), 143–202 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cleve, R.: Limits on the Security of Coin Flips when Half the Processors are Faulty. In: 18th STOC, pp. 364–369 (1986)Google Scholar
  7. 7.
    Dodis, Y., Halevi, S., Rabin, T.: A Cryptographic Solution to a Game Theoretic Problem. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 112–130. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Dodis, Y., Rabin, T.: Cryptography and Game Theory. In: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)Google Scholar
  9. 9.
    Fuchsbauer, G., Katz, J., Naccache, D.: Efficient Rational Secret Sharing in Standard Communication Networks. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 419–436. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, Cambridge (1991)Google Scholar
  11. 11.
    Garay, J.A., MacKenzie, P.D., Prabhakaran, M., Yang, K.: Resource fairness and composability of cryptographic protocols. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 404–428. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Goldreich, O.: Foundations of Cryptography. Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  13. 13.
    Goldreich, O., Micali, S., Wigderson, A.: How to Play any Mental Game – A Completeness Theorem for Protocols with Honest Majority. In: 19th STOC, pp. 218–229 (1987)Google Scholar
  14. 14.
    Goldreich, O., Kahan, A.: How To Construct Constant-Round Zero-Knowledge Proof Systems for NP. Journal of Cryptology 9(3), 167–190 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Goldwasser, S., Levin, L.A.: Fair computation of general functions in presence of immoral majority. In: Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 77–93. Springer, Heidelberg (1991)Google Scholar
  16. 16.
    Goldwasser, S., Micali, S.: Probabilistic Encryption and How to Play Mental Poker Keeping Secret All Partial Information. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Goldwasser, S., Micali, S., Rachoff, C.: The Knowledge Complexity of Interactive Proof Systems. SIAM J. Computing 18(1), 186–208 (1989)zbMATHCrossRefGoogle Scholar
  18. 18.
    Gordon, S.D., Hazay, C., Katz, J., Lindell, Y.: Complete fairness in secure two-party computation. In: STOC, pp. 413–422 (2008)Google Scholar
  19. 19.
    Gordon, S.D., Katz, J.: Rational Secret Sharing, Revisited. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 229–241. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Gordon, S.D., Katz, J.: Partial Fairness in Secure Two-Party Computation. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 157–176. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  21. 21.
    Gradwohl, R., Livne, N., Rosen, A.: Sequential Rationality in Cryptographic Protocols. In: FOCS, pp. 623–632 (2010)Google Scholar
  22. 22.
    Halpern, J., Teague, V.: Efficient Rational Secret Sharing in Standard Communication Networks. In: 36th STOC, pp. 623–632 (2004)Google Scholar
  23. 23.
    Halpern, J., Pass, R.: Game Theory with Costly Computation. In: ICS, pp. 120–142 (2010)Google Scholar
  24. 24.
    Izmalkov, S., Lepinski, M., Micali, S.: Verifiably Secure Devices. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 273–301. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  25. 25.
    Izmalkov, S., Micali, S., Lepinski, M.: Rational Secure Computation and Ideal Mechanism Design. In: 46th FOCS, pp. 585–595 (2005)Google Scholar
  26. 26.
    Katz, J.: Bridging Game Theory and Cryptography: Recent Results and Future Directions. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 251–272. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  27. 27.
    Kol, G., Naor, M.: Games for exchanging information. In: 40th STOC, pp. 423–432 (2008)Google Scholar
  28. 28.
    Kol, G., Naor, M.: Cryptography and Game Theory: Designing Protocols for Exchanging Information. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 320–339. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  29. 29.
    Lysyanskaya, A., Triandopoulos, N.: Rationality and Adversarial Behavior in Multi-party Computation. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 180–197. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Ong, S.J., Parkes, D.C., Rosen, A., Vadhan, S.P.: Fairness with an Honest Minority and a Rational Majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 36–53. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  31. 31.
    Pass, R., Shelat, A.: Renegotiation-Safe Protocols. In: Innovations in Computer Science, ICS 2011 (2011)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Gilad Asharov
    • 1
  • Ran Canetti
    • 2
  • Carmit Hazay
    • 3
  1. 1.Department of Computer ScienceBar-Ilan UniversityIsrael
  2. 2.Department of Computer ScienceTel-Aviv UniversityIsrael
  3. 3.Department of Computer ScienceAarhus UniversityDenmark

Personalised recommendations