EUROCRYPT 2011: Advances in Cryptology – EUROCRYPT 2011 pp 284-302

# Almost Optimum t-Cheater Identifiable Secret Sharing Schemes

• Satoshi Obana
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6632)

## Abstract

In Crypto’95, Kurosawa, Obana and Ogata proposed a k-out-of-n secret sharing scheme capable of identifying up to t cheaters with probability 1 − ε under the condition $$t \leq \lfloor$$(k–1)/3. The size of share $$|{\cal V}_i|$$ of the scheme satisfies $$|{\cal V}_i|$$ = $$|{\cal S}|/\epsilon^{t+2}$$, which was the most efficient scheme known so far. In this paper, we propose new k-out-of-n secret sharing schemes capable of identifying cheaters. The proposed scheme possesses the same security parameters t,ε as those of Kurosawa et al.. The scheme is surprisingly simple and its size of share is $$|{\cal V}_i|=|{\cal S}|/\epsilon$$, which is much smaller than that of Kurosawa et al. and is almost optimum with respect to the size of share; that is, the size of share is only one bit longer than the existing bound. Further, this is the first scheme which can identify cheaters, and whose size of share is independent of any of n,k and t. We also present schemes which can identify up to $$\lfloor{(k-2)/2}$$, and $$\lfloor{(k-1)/2}$$ cheaters whose sizes of share can be approximately written by $$|{\cal V}_i|\approx (n\cdot(t+1)\cdot 2^{3t-1}\cdot|{\cal S}|)/\epsilon$$ and $$|{\cal V}_i|\approx ((n\cdot t\cdot 2^{3t})^2\cdot|{\cal S}|)/\epsilon^2$$, respectively. The number of cheaters that the latter two schemes can identify meet the theoretical upper bound.

### Keywords

Secret Sharing Cheater Identification Reed-Solomon Code Universal Hash

### References

1. 1.
Araki, T.: Efficient (k,n) Threshold Secret Sharing Scheme Secure against Cheating from n − 1 Cheaters. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 133–142. Springer, Heidelberg (2007)
2. 2.
Araki, T., Obana, S.: Flaws in Some Secret Sharing Schemes against Cheating. In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 122–132. Springer, Heidelberg (2007)
3. 3.
Blakley, G.R.: Safeguarding cryptographic keys. In: Proc. AFIPS 1979, National Computer Conference, vol. 48, pp. 137–313 (1979)Google Scholar
4. 4.
Brickell, E.F., Stinson, D.R.: The Detection of Cheaters in Threshold Schemes. SIAM Journal on Discrete Mathematics 4(4), 502–510 (1991)
5. 5.
Carpentieri, M.: A Perfect Threshold Secret Sharing Scheme to Identify Cheaters. Designs, Codes and Cryptography 5(3), 183–187 (1995)
6. 6.
Cramer, R., Dodis, Y., Fehr, S., Padró, C., Wichs, D.: Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 471–488. Springer, Heidelberg (2008)
7. 7.
Carpentieri, M., De Santis, A., Vaccaro, U.: Size of Shares and Probability of Cheating in Threshold Schemes. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 118–125. Springer, Heidelberg (1994)Google Scholar
8. 8.
Cramer, R., Damgård, I., Fehr, S.: On the Cost of Reconstructing a Secret, or VSS with Optimal Reconstruction Phase. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 503–523. Springer, Heidelberg (2001)
9. 9.
Cabello, S., Padró, C., Sáez, G.: Secret Sharing Schemes with Detection of Cheaters for a General Access Structure. Designs, Codes and Cryptography 25(2), 175–188 (2002)
10. 10.
den Boer, B.: A Simple and Key-Economical Unconditional Authentication Scheme. Journal of Computer Security 2, 65–71 (1993)Google Scholar
11. 11.
Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly Secure Message Transmission. Journal of the ACM 40(1), 17–47 (1993)
12. 12.
Kurosawa, K., Obana, S., Ogata, W.: t-Cheater Identifiable (k,n) Secret Sharing Schemes. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 410–423. Springer, Heidelberg (1995)Google Scholar
13. 13.
Kurosawa, K., Suzuki, K.: Almost Secure (1-Round, n-Channel) Message Transmission Scheme. In: Desmedt, Y. (ed.) ICITS 2007. LNCS, vol. 4883, pp. 99–112. Springer, Heidelberg (2009)
14. 14.
MacWilliams, F., Sloane, N.: The Theory of Error Correcting Codes. North Holland, Amsterdam (1977)
15. 15.
McEliece, R.J., Sarwate, D.V.: On Sharing Secrets and Reed-Solomon Codes. Communications of the ACM 24(9), 583–584 (1981)
16. 16.
Obana, S., Araki, T.: Almost Optimum Secret Sharing Schemes Secure Against Cheating for Arbitrary Secret Distribution. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 364–379. Springer, Heidelberg (2006)
17. 17.
Ogata, W., Kurosawa, K.: Optimum Secret Sharing Scheme Secure against Cheating. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 200–211. Springer, Heidelberg (1996)Google Scholar
18. 18.
Ogata, W., Kurosawa, K.: Provably Secure Metering Scheme. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 388–398. Springer, Heidelberg (2000)
19. 19.
Ogata, W., Kurosawa, K., Stinson, D.R.: Optimum Secret Sharing Scheme Secure against Cheating. SIAM Journal on Discrete Mathematics 20(1), 79–95 (2006)
20. 20.
Pedersen, T.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
21. 21.
Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest Majority. In: Proc. STOC 1989, pp. 73–85 (1989)Google Scholar
22. 22.
Rabin, T.: Robust Sharing of Secrets When the Dealer is Honest or Cheating. Journal of the ACM 41(6), 1089–1109 (1994)
23. 23.
Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)
24. 24.
Stinson, D.R.: On the Connections between Universal Hashing, Combinatorial Designs and Error-Correcting Codes. Congressus Numerantium 114, 7–27 (1996)
25. 25.
Tompa, M., Woll, H.: How to Share a Secret with Cheaters. Journal of Cryptology 1(3), 133–138 (1989)