Advertisement

Semi-homomorphic Encryption and Multiparty Computation

  • Rikke Bendlin
  • Ivan Damgård
  • Claudio Orlandi
  • Sarah Zakarias
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6632)

Abstract

An additively-homomorphic encryption scheme enables us to compute linear functions of an encrypted input by manipulating only the ciphertexts. We define the relaxed notion of a semi-homomorphic encryption scheme, where the plaintext can be recovered as long as the computed function does not increase the size of the input “too much”. We show that a number of existing cryptosystems are captured by our relaxed notion. In particular, we give examples of semi-homomorphic encryption schemes based on lattices, subset sum and factoring. We then demonstrate how semi-homomorphic encryption schemes allow us to construct an efficient multiparty computation protocol for arithmetic circuits, UC-secure against a dishonest majority. The protocol consists of a preprocessing phase and an online phase. Neither the inputs nor the function to be computed have to be known during preprocessing. Moreover, the online phase is extremely efficient as it requires no cryptographic operations: the parties only need to exchange additive shares and verify information theoretic MACs. Our contribution is therefore twofold: from a theoretical point of view, we can base multiparty computation on a variety of different assumptions, while on the practical side we offer a protocol with better efficiency than any previous solution.

Keywords

Homomorphic Encryption Online Phase Honest Party Secure Multiparty Computation Honest Parti 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BCNP04]
    Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: FOCS, pp. 186–195 (2004)Google Scholar
  2. [BD10]
    Bendlin, R., Damgård, I.: Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 201–218. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. [BDOZ10]
    Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorhic enryption and multiparty computation (full version). In: The Eprint Archive, report 2010/514 (2010)Google Scholar
  4. [Bea91]
    Beaver, D.: Efficient Multiparty Protocols Using Circuit Randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)Google Scholar
  5. [BOGW88]
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: STOC, pp. 1–10 (1988)Google Scholar
  6. [Can01]
    Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)Google Scholar
  7. [CCD88]
    Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC, pp. 11–19 (1988)Google Scholar
  8. [CD09]
    Cramer, R., Damgård, I.: On the amortized complexity of zero-knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. [CDN01]
    Cramer, R., Damgård, I., Nielsen, J.B.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. [CLOS02]
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC, pp. 494–503 (2002)Google Scholar
  11. [DGK09]
    Damgård, I., Geisler, M., Krøigaard, M.: A correction to efficient and secure comparison for on-line auctions. IJACT 1(4), 323–324 (2009)zbMATHCrossRefGoogle Scholar
  12. [DGHV10]
    van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 24–43. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  13. [DJ01]
    Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. [DO10]
    Damgård, I., Orlandi, C.: Multiparty computation for dishonest majority: From passive to active security at low cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 558–576. Springer, Heidelberg (2010)Google Scholar
  15. [Gen09]
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)Google Scholar
  16. [GHV10]
    Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple bgn-type cryptosystem from lwe. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 506–522. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. [HIK07]
    Harnik, D., Ishai, Y., Kushilevitz, E.: How Many Oblivious Transfers Are Needed for Secure Multiparty Computation? In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 284–302. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. [IPS09]
    Ishai, Y., Prabhakaran, M., Sahai, A.: Secure arithmetic computation with no honest majority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294–314. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. [LPS10]
    Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 382–400. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  20. [OU98]
    Okamoto, T., Uchiyama, S.: A new public-key cryptosystem as secure as factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. [Pai99]
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)Google Scholar
  22. [PSSW09]
    Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. [RAD78]
    Rivest, R., Adleman, L., Dertouzos, M.: On data banks and privacy homomorphisms. In: Foundations of Secure Computation, pp. 169–178 (1978)Google Scholar
  24. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar

Copyright information

© International Association for Cryptologic Research 2011

Authors and Affiliations

  • Rikke Bendlin
    • 1
  • Ivan Damgård
    • 1
  • Claudio Orlandi
    • 1
  • Sarah Zakarias
    • 1
  1. 1.Department of Computer ScienceAarhus University and CFEMDenmark

Personalised recommendations