Solanum sect. Lycopersicon

  • Silvana GrandilloEmail author
  • Roger Chetelat
  • Sandra Knapp
  • David Spooner
  • Iris Peralta
  • Maria Cammareri
  • Olga Perez
  • Pasquale Termolino
  • Pasquale Tripodi
  • Maria Luisa Chiusano
  • Maria Raffaella Ercolano
  • Luigi Frusciante
  • Luigi Monti
  • Domenico Pignone


In this review, we examine the plant group Solanum sect. Lycopersicon – a clade of 13 species, including the domesticated tomato (Solanum lycopersicum L.) and its wild relatives – along with four allied species in the immediate outgroups Solanum sects. Juglandifolia and Lycopersicoides. We summarize the geographic distribution and morphological characters of these plant groups, describing their evolutionary relationships in the context of a new taxonomic revision at the species level of all these groups. We provide an overview of the role that wild tomato species have played in the development of cytogenetic stocks, in classical and molecular genetic studies as well as in crop improvement through traditional and advanced tools. We discuss how the very narrow genetic basis of cultivated tomato germplasm has forced tomato geneticists and breeders to rely on the wealth of genetic variation present in the wild relatives to address the many breeding challenges. The numerous molecular mapping studies conducted using interspecific crosses have clearly demonstrated that the breeding value of exotic (wild) tomato germplasm goes far beyond its phenotype. These studies also show that we are still far from being able to fully exploit the breeding potential of the thousands of accessions stored in seed banks around the world, in addition to those that may still be found in natural habitats. Over the past decades, tomato breeders have been at the forefront of establishing new principles for crop breeding based on the use of wild species to improve modern cultivars. In this respect, among all model systems, the wild and domesticated species of the tomato clade have pioneered development of novel populations such as “exotic libraries.” These genetic resources, combined with the increasing knowledge deriving from the many “omics” tools, including the tomato genome sequence, are expected to further improve the efficiency with which wild tomato relatives will contribute to the improvement of this important crop.



Research in the laboratories of S. Grandillo and S. Knapp is supported in part by the European Union (EU) program EU-SOL (contract PL 016214–2 EU-SOL). Research in the laboratories of S. Grandillo is also supported in part by the Italian MIUR project GenoPOM. Research in the laboratories of S. Knapp and D. M. Spooner is supported in part by the National Science Foundation’s (NSF) Planetary Biodiversity Inventory program (DEB-0316614 “PBI Solanum – a worldwide treatment”). This work was in part supported also by the Italian CNR Short-Term Mobility Program 2009 to S. Grandillo. Contribution nr. 363 from CNR-IGV, Institute of Plant Genetics, Portici.


  1. Agrama HA, Scott JW (2006) Quantitative trait loci for Tomato yellow leaf curl virus and Tomato mottle virus resistance in tomato. J Am Soc Hortic Sci 131(2):637–645Google Scholar
  2. Albacete A, Martínez-Andúar C, Ghanem ME, Acosta M, Sánchez-Bravo J, Asins MJ, Cuartero J, Lutts S, Dodd IC, Pérez-Alfocea F (2009) Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant Cell Environ 32:928–938PubMedCrossRefGoogle Scholar
  3. Albrecht E, Escobar M, Chetelat RT (2010) Genetic diversity and population structure in the tomato-like nightshades Solanum lycopersicoides and S. sitiens. Ann. Bot. 105:535–554Google Scholar
  4. Albrecht E, Chetelat RT (2009) Comparative genetic linkage map of Solanum sect Juglandifolia: evidence of chromosomal rearrangements and overall synteny with the tomatoes and related nightshades. Theor Appl Genet 118:831–847PubMedCrossRefGoogle Scholar
  5. Alexander L, Lincoln RE, Wright A (1942) A survey of the genus Lycopersicon for resistance to the important tomato diseases occurring in Ohio and Indiana. Plant Dis Rep Suppl 136:51–85Google Scholar
  6. Alpert K, Grandillo S, Tanksley SD (1995) fw2.2: a major QTL controlling fruit weight is common to both red- and green-fruited tomato species. Theor Appl Genet 91:994–1000CrossRefGoogle Scholar
  7. Alvarez AE, van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283–1292CrossRefGoogle Scholar
  8. Ammiraju JSS, Veremis JC, Huang X, Roberts PA, Kaloshian I (2003) The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet 106:478–484PubMedGoogle Scholar
  9. Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of Tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530PubMedCrossRefGoogle Scholar
  10. APG III (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc 161:105–121Google Scholar
  11. Arens P, Odinot P, van Heusden AW, Lindhout P, Vosman B (1995) GATA- and GACA-repeats are not evenly distributed throughout the tomato genome. Genome 38(1):84–90PubMedCrossRefGoogle Scholar
  12. Areshchenkova T, Ganal MW (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536–544PubMedCrossRefGoogle Scholar
  13. Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235PubMedCrossRefGoogle Scholar
  14. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  15. Ashrafi H, Kinkade M, Foolad MR (2009) A new genetic linkage map of tomato based on a Solanum lycopersicum × S. pimpinellifolium RIL population displaying locations of candidate pathogen response genes. Genome 52:935–956PubMedCrossRefGoogle Scholar
  16. Asins MJ, Bolarín MC, Pérez-Alfocea F, Estañ MT, Martínez-Andújar C, Albacete A, Villalta I, Bernet GP, Dodd IC (2010) Genetic analysis of physiological components of salt tolerance conferred by Solanum rootstocks. What is the rootstock doing for the scion? Theor Appl Genet 121:105–115PubMedCrossRefGoogle Scholar
  17. Astua-Monge G, Minsavage GV, Stall RE, Vallejos E, Davis MJ, Jones JB (2000) Xv4-vrxv4: a new gene-for-gene interaction identified between Xanthomonas campestris pv. Vesicatoria Race T3 and the wild tomato relative Lycopersicon pennellii. Mol Plant Microbe Interact 13:1346–1355PubMedCrossRefGoogle Scholar
  18. Azanza F, Young TE, Kim D, Tanksley SD, Juvik JA (1994) Characterization of the effect of introgressed segments of chromosome 7 and 10 from Lycopersion chmielewskii on tomato soluble solids, pH, and yield. Theor Appl Genet 87:965–972CrossRefGoogle Scholar
  19. Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can we gain in the future? Ann Bot 100:1085–1094PubMedCrossRefGoogle Scholar
  20. Bai Y, Huang C-C, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003) QTLs for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant Microbe Interact 16(2):169–176Google Scholar
  21. Bai Y, van der Hulst R, Huang CC, Wei L, Stam P, Lindhout P (2004) Mapping Ol-4, a gene conferring resistance to Oidium neolycopersici and originating from Lycopersicon peruvianum LA2172, requires muliallelic, single-locus markers. Theor Appl Genet 109:1215–1223PubMedCrossRefGoogle Scholar
  22. Bai Y, van der Hulst R, Bonnema G, Marcel TC, Meijer-Dekens F, Niks RE, Lindhout P (2005) Tomato defense to Oidium neolycopersici: dominant Ol genes confer isolate-dependent resistance via a different mechanism than recessive ol-2. Mol Plant Microbe Interact 18(4):354–362PubMedCrossRefGoogle Scholar
  23. Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Pim Lindhout P, Visser R, Theres K, Panstruga R (2008) Naturally occurring broad-spectrum powdery mildew resistance in a Central American tomato accession is caused by loss of Mlo function. Mol Plant Microbe Interact 21(1):30–39PubMedCrossRefGoogle Scholar
  24. Baldwin EA, Nisperos-Carriedo MO, Baker R, Scott JW (1991) Quantitative analysis of flavor parameters in six Florida tomato cultivars. J Agric Food Chem 39:1135–1140CrossRefGoogle Scholar
  25. Balint-Kurti PJ, Dixon MS, Jones DA, Norcott KA, Jones JDG (1994) RFLP linkage analysis of the Cf-4 and Cf-9 genes for resistance to Cladosporium fulvum in tomato. Theor Appl Genet 88:691–700CrossRefGoogle Scholar
  26. Balint-Kurti PJ, Jones DA, Jones JDG (1995) Integration of the classical and RFLP linkage maps of the short arm of tomato chromosome 1. Theor Appl Genet 90:17–26CrossRefGoogle Scholar
  27. Ballester AR, Molthoff J, de Vos R, Hekkert BL, Orzaez D, Fernández-Moreno JP, Tripodi P, Grandillo S, Martin C, Heldens J, Ykema M, Granell A, Bovy A (2010) Biochemical and molecular analysis of pink tomatoes: deregulated expression of the gene encoding transcription factor SlMYB12 leads to pink tomato fruit color. Plant Physiol 152:71–84PubMedCrossRefGoogle Scholar
  28. Ballvora A, Pierre M, van den Ackerveken G, Schornack S, Rossier O, Ganal M, Lahaye T, Bonas U (2001) Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv. vesicatoria AvrBs4 protein. Mol Plant Microbe Interact 14:629–638PubMedCrossRefGoogle Scholar
  29. Barone A, Frusciante L (2007) Molecular marker-assisted selection for resistance to pathogens in tomato. In: Guimaraes E, Ruane J, Scherf BD, Sonnino A, Dargie JD (eds) Marker-assisted selection: current status and future perspectives in crops, livestock, forestry and fish. FAO, Rome. Agriculture and Consumer Protection Dept, 978-92-5-105717-9, A1120 (, pp 151–164
  30. Barone A, Chiusano ML, Ercolano MR, Giuliano G, Grandillo S, Frusciante L (2008) Structural and functional genomics of tomato. Int J Plant Genom 2008:820274Google Scholar
  31. Barone A, Di Matteo A, Carputo D, Frusciante L (2009) High-throughput genomics enhances tomato breeding efficiency. Curr Genom 10(1):1–9CrossRefGoogle Scholar
  32. Barrero LS, Tanksley SD (2004) Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theor Appl Genet 109:669–679PubMedCrossRefGoogle Scholar
  33. Baxter CJ, Sabar M, Quick WP, Sweetlove LJ (2005) Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. J Exp Bot 56:1591–1604PubMedCrossRefGoogle Scholar
  34. Behare J, Laterrot H, Sarfatti M, Zamir D (1991) Restriction fragment length polymorphisms mapping of the Stemphylium resistance gene in tomato. Mol Plant Microbe Interact 4:489–492CrossRefGoogle Scholar
  35. Bennett MD, Smith JD (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond Biol Sci 181:109–135Google Scholar
  36. Bentham G, Hooker JD (1873) Solanaceae. Genera Planta 2:882–913Google Scholar
  37. Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum: linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877PubMedGoogle Scholar
  38. Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, López J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley SD (1998a) Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170–180, erratum 1191–1196Google Scholar
  39. Bernacchi D, Beck-Bunn T, Eshed Y, López J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1998b) Advanced backcross QTL analysis in tomato I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor Appl Genet 97:381–397CrossRefGoogle Scholar
  40. Bernatzky R (1993) Genetic mapping and protein product diversity of the self-incompatibility locus in wild tomato (Lycopersicon peruvianum). Biochem Genet 31(3–4):173–184PubMedCrossRefGoogle Scholar
  41. Bernatzky R, Tanksley S (1986) Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898PubMedGoogle Scholar
  42. Blauth SL, Steffens JC, Churchill GA, Mutschler MA (1999) Identification of QTLs controlling acylsugar fatty acid composition in an intraspecific population of Lycopersicon pennellii (Corr.) D’Arcy. Theor Appl Genet 99:376–381CrossRefGoogle Scholar
  43. Bohn GW, Tucker CM (1939) Immunity to Fusarium wilt in the tomato. Science 89:603–604PubMedCrossRefGoogle Scholar
  44. Bohn GW, Tucker CM (1940) Studies on Fusarium wilt of the tomato. I. Immunity in Lycopersicon pimpinellifolium Mill. and its inheritance in hybrids. MO Agric Exp Stn Res Bull 311:82Google Scholar
  45. Bohs L (1994) Cyphomandra (Solanaceae). FL Neotrop Monogr 63:1–175Google Scholar
  46. Bohs L (1995) Transfer of Cyphomandra (Solanaceae) and its species to Solanum. Taxon 44:583–587CrossRefGoogle Scholar
  47. Bohs L (2005) Major clades in Solanum based on ndhF sequences. In: Keating RC, Hollowell VC, Croat TB (eds) A Festschrift for William G. D’Arcy: the legacy of a taxonomist. Monographs in Systematic Botany from the Missouri Botanical Garden, vol 104. Missouri Botanical Garden Press, St. Louis, MO, USA, pp 27–49Google Scholar
  48. Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17CrossRefGoogle Scholar
  49. Bohs L, Olmstead RG (1999) Solanum phylogeny inferred from chloroplast DNA sequence data. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV: advances in biology and utilization. Royal Botanic Gardens, Kew, UK, pp 97–110Google Scholar
  50. Bohs L, Olmstead RG (2001) A reassessment of Normandia and Triguera (Solanaceae). Plant Syst Evol 228:33–48CrossRefGoogle Scholar
  51. Bonnema G, van Schipper D, Heusden S, Zabel P, Lindhout P (1997) Tomato chromosome 1: High-resolution genetic and physical mapping of the short arm in an interspecific Lycopersicon esculentum × L. peruvianum cross. Mol Gen Genet 253:455–462PubMedCrossRefGoogle Scholar
  52. Bournival BL, Scott JW, Vallejos CE (1989) An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp. lycopersici in tomato. Theor Appl Genet 78:489–494CrossRefGoogle Scholar
  53. Bournival BL, Vallejos CE, Scott JW (1990) Genetic analysis of resistances to races 1 and 2 of Fusarium oxysporum f. sp. lycopersici from the wild tomato Lycopersicon pennellii. Theor Appl Genet 79:641–645CrossRefGoogle Scholar
  54. Brandwagt BF, Mesbah LA, Takken FLW, Laurent PL, Kneppers TJA, Hille J, Nijkamp HJJ (2000) A longevity assurance gene homolog of tomato mediates resistance to Alternaria alternata f. sp. lycopersici toxins and fumonisin B1. Proc Natl Acad Sci USA 97(9):4961–4966PubMedCrossRefGoogle Scholar
  55. Bretó MP, Asins MJ, Carbonell EA (1993) Genetic variability in Lycopersicon species and their genetic relationships. Theor Appl Genet 86:113–120CrossRefGoogle Scholar
  56. Bretó MP, Asins MJ, Carbonell EA (1994) Salt tolerance in Lycopersicon species III. Detection of quantitative trait loci by means of molecular markers. Theor Appl Genet 88:395–401CrossRefGoogle Scholar
  57. Brewer MT, Moyseenko JB, Monforte AJ, van der Knaap E (2007) Morphological variation in tomato: a comprehensive study of quantitative trait loci controlling fruit shape and development. J Exp Bot 58(6):1339–1349PubMedCrossRefGoogle Scholar
  58. Brommonschenkel SH, Tanksley SD (1997) Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol Gen Genet 256:121–126PubMedCrossRefGoogle Scholar
  59. Brommonschenkel SH, Frary A, Tanksley SD (2000) The broadspectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant Microbe Interact 13:1130–1138PubMedCrossRefGoogle Scholar
  60. Broun P, Tanksley SD (1996) Characterization and genetic mapping of simple repeat sequences in the tomato genome. Mol Gen Genet 250(1):39–49PubMedCrossRefGoogle Scholar
  61. Brouwer DJ, St. Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs. Theor Appl Genet 108:628–638PubMedCrossRefGoogle Scholar
  62. Brouwer DJ, Jones ES, St. Clair DA (2004) QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome 47:475–492PubMedCrossRefGoogle Scholar
  63. Brüggemann W, Linger P, Wenner A, Koornneef M (1996) Improvement of post-chilling photosynthesis in tomato by sexual hybridisation with a Lycopersicon peruvianum line from elevated altitude. Adv Hortic Sci 10:215–218Google Scholar
  64. Budiman MA, Chang S-B, Lee S, Yang TJ, Zhang H-B, de Jong H, Wing RA (2004) Localization of jointless-2 gene in the centromeric region of tomato chromosome 12 based on high resolution genetic and physical mapping. Theor Appl Genet 108:190–196PubMedCrossRefGoogle Scholar
  65. Caicedo AL, Schaal BA (2004) Population structure and phylogeography of Solanum pimpinellifolium inferred from a nuclear gene. Mol Ecol 13:1871–1882PubMedCrossRefGoogle Scholar
  66. Canady MA, Stevens MR, Barineau MS, Scott JW (2001) Tomato Spotted Wilt Virus (TSWV) resistance in tomato derived from Lycopersicon chilense Dun. LA 1938. Euphytica 117:19–25CrossRefGoogle Scholar
  67. Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48:685–697PubMedCrossRefGoogle Scholar
  68. Canady MA, Ji Y, Chetelat RT (2006) Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genetics 174:1775–1788PubMedCrossRefGoogle Scholar
  69. Carmeille A, Caranta C, Dintinger J, Prior P, Luisetti J, Besse P (2006) Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor Appl Genet 113:110–121PubMedCrossRefGoogle Scholar
  70. Cassol T, St. Clair DA (1994) Inheritance of resistance to blackmold (Alternaria alternata (Fr.) Keissler) in two interspecific crosses of tomato (Lycopersicon esculentum × L. cheesmanii f. typicum). Theor Appl Genet 88:581–588CrossRefGoogle Scholar
  71. Causse M, Saliba-Colombani V, Lesschaeve I, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. Theor Appl Genet 102:273–283CrossRefGoogle Scholar
  72. Causse M, Saliba-Colombani V, Lecomte L, Duffé P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098PubMedCrossRefGoogle Scholar
  73. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55(403):1671–1685PubMedCrossRefGoogle Scholar
  74. Causse M, Chaïb J, Lecomte L, Buret M, Hospital F (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115(3):429–442PubMedCrossRefGoogle Scholar
  75. Chaerani R, Smulders MJM, van der Linden CG, Vosman B, Stam P, Voorrips RE (2007) QTL identification for early blight resistance (Alternaria solani) in a Solanum lycopersicum x S. arcanum cross. Theor Appl Genet 114:439–450PubMedCrossRefGoogle Scholar
  76. Chaguè V, Mercier JC, Guenard M, de Courcel A, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677CrossRefGoogle Scholar
  77. Chaïb J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 112:934–944PubMedCrossRefGoogle Scholar
  78. Chen FQ, Foolad MR (1999) A molecular linkage map of tomato based on an interspecific cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94–103Google Scholar
  79. Chen KY, Tanksley SD (2004) High-resolution mapping and functional analysis of se2.1: a major stigma exsertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168:1563–1573PubMedCrossRefGoogle Scholar
  80. Chen FQ, Foolad MR, Hyman J, St. Clair DA, Beelaman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299CrossRefGoogle Scholar
  81. Chen KY, Cong B, Wing R, Vrebalov J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643–645PubMedCrossRefGoogle Scholar
  82. Chetelat RT (2006) Revised list of miscellaneous stocks. Rep Tomato Genet Coop 56:37–56Google Scholar
  83. Chetelat RT (2009) Nuclear DNA content in Solanum sect. Juglandifolium and Solanum sect. Lycopersicoides. Tomato Genet Coop Rep 59:11–13Google Scholar
  84. Chetelat RT, Ji Y (2007) Cytogenetics and evolution. In: Razdan MK, Mattoo AK (eds) Genetic improvement of solanaceous crops, vol 2, Tomato. Science, Enfield, NJ, USA, pp 77–112Google Scholar
  85. Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241CrossRefGoogle Scholar
  86. Chetelat RT, Klann E, DeVerna JW, Yalle S, Bennett AB (1993) Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii. Plant J 4:643–650CrossRefGoogle Scholar
  87. Chetelat RT, DeVerna JW, Bennett AB (1995a) Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulator gene (sucr) controlling fruit sugar composition. Theor Appl Genet 91:327–333Google Scholar
  88. Chetelat RT, DeVerna JW, Bennett AB (1995b) Effects of the Lycopersicon chmielewskii sucrose accumulator gene (sucr) on fruit yield and quality parameters following introgression into tomato. Theor Appl Genet 91:334–339Google Scholar
  89. Chetelat RT, Cisneros P, Stamoa L, Rick CM (1997) A male-fertile Lycopersicon esculentum × Solanum lycopersicoides hybrid enables direct backcrossing to tomato at the diploid level. Euphytica 95:99–108CrossRefGoogle Scholar
  90. Chetelat RT, Rick CM, Cisneros P, Alpert KB, DeVerna JW (1998) Identification, transmission, and cytological behavior of Solanum lycopersicoides Dun. monosomic alien addition lines in tomato (Lycopersicon esculentum Mill.). Genome 41:40–50Google Scholar
  91. Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC1 Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics 154:857–867PubMedGoogle Scholar
  92. Chetelat RT, Pertuzé RA, Faundez L, Graham EB, Jones CM (2009) Distribution, ecology and reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of northern Chile. Euphytica 167:77–93CrossRefGoogle Scholar
  93. Child A (1990) A synopsis of Solanum subgenus Potatoe (G. Don) D’Arcy Tuberarium (Dunal) Bitter (s.l.). Feddes Rep 101:209–235CrossRefGoogle Scholar
  94. Chiusano ML, D'Agostino N, Traini A, Licciardello C, Raimondo E, Aversano M, Frusciante L, Monti L (2008) ISOL@: an Italian SOLAnaceae genomics resource. BMC Bioinformat 9(Suppl 2):S7CrossRefGoogle Scholar
  95. Chunwongse J, Bunn TB, Crossman C, Jiang J, Tanksley SD (1994) Chromosomal localization and molecular-marker tagging of the powdery mildew resistance gene (Lv) in tomato. Theor Appl Genet 89:76–79CrossRefGoogle Scholar
  96. Chunwongse S, Doganlar C, Crossman JJ, Tanksley SD (1997) High-resolution genetic map of the Lv resistance locus in tomato. Theor Appl Genet 95:220–223CrossRefGoogle Scholar
  97. Chunwongse J, Chunwongse C, Black L, Hanson P (1998) Mapping of the Ph-3 gene for late blight from L. pimpinellifolium L 3708. Rep Tomato Genet Coop 48:13–14Google Scholar
  98. Chunwongse J, Chunwongse C, Black L, Hanson P (2002) Molecular mapping of the Ph-3 gene for late blight resistance in tomato. J Hortic Sci Biotechnol 77(3):281–286Google Scholar
  99. Cirulli M, Alexander LJ (1966) A comparison of pathogenic isolates of Fusarium oxysporum f. lycopersici and different sources of resistance in tomato. Phytopathology 56:1301–1304Google Scholar
  100. Coaker GL, Francis DM (2004) Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor Appl Genet 108:1047–1055PubMedCrossRefGoogle Scholar
  101. Coaker GL, Meulia T, Kabelka EA, Jones AK, Francis DM (2002) A QTL controlling stem morphology and vascular development in Lycopersicon esculentum × Lycopersicon hirsutum (Solanaceae) crosses is located on chromosome 2. Am J Bot 89:1859–1866PubMedCrossRefGoogle Scholar
  102. Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804PubMedCrossRefGoogle Scholar
  103. Correll DS (1958) A new species and some nomenclatural changes in Solanum section Tuberarium. Madroño 14:232–236Google Scholar
  104. Correll DS (1962) The potato and its wild relatives. Texas Research Foundation, Renner, TX, USAGoogle Scholar
  105. Cox S (2000) I Say Tomayto, You Say Tomahto.
  106. D’Arcy WG (1972) Solanaceae studies II: typification of subdivisions of Solanum. Ann MO Bot Gard 59:262–278CrossRefGoogle Scholar
  107. D’Arcy WG (1987) The circumscription of Lycopersicon. Solanaceae Newsl 2:60–61Google Scholar
  108. D’Arcy WG (1991) The Solanaceae since 1976, with a review of its biogeography. In: Hawkes JG, Lester RN, Nee M, Estrada N (eds) Solanaceae III: taxonomy, chemistry, evolution. Royal Botanic Gardens, Kew, UK, pp 75–137Google Scholar
  109. D'Agostino N, Aversano M, Frusciante L, Chiusano ML (2007) TomatEST database: in silico exploitation of EST data to explore expression patterns in tomato species. Nucleic Acids Res 35:D901–D905PubMedCrossRefGoogle Scholar
  110. D'Agostino N, Traini A, Frusciante L, Chiusano ML (2009) SolEST database: a “one-stop shop” approach to the study of Solanaceae transcriptomes. BMC Plant Biol 9:142PubMedCrossRefGoogle Scholar
  111. Danesh D, Aarons S, McGill GE, Young ND (1994) Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol Plant Microbe Interact 7:464–471PubMedCrossRefGoogle Scholar
  112. Darwin SC, Knapp S, Peralta IE (2003) Taxonomy of tomatoes in the Galapagos Islands: native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst Biodivers 12:29–53CrossRefGoogle Scholar
  113. Davies JN (1966) Occurrence of sucrose in the fruit of some species of Lycopersicon. Nature 209(5023):640–641CrossRefGoogle Scholar
  114. Davis J, Yu D, Evans W, Gokirmak T, Chetelat RT, Stotz HU (2009) Mapping of loci from Solanum lycopersicoides conferring resistance or susceptibility to Botrytis cinerea in tomato. Theor Appl Genet 119:305–314PubMedCrossRefGoogle Scholar
  115. De Giovanni C, Dell’Orco P, Bruno A, Ciccarese F, Lotti C, Ricciardi L (2004) Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci 166:41–48CrossRefGoogle Scholar
  116. DeCandolle A (1886) Origin of cultivated plants. Hafner, New York, USA, 1959 reprintGoogle Scholar
  117. Dennett RK (1950) The association of resistance to Fusarium wilt and Stemphylium leaf spot disease in tomato, Lycopersicon esculentum. Proc Am Soc Hortic Sci 56:353–357Google Scholar
  118. DeVerna JW, Rick CM, Chetelat RT, Lanini BJ, Alpert KB (1990) Sexual hybridization of Lycopersicon esculentum and Solanum rickii by means of a sesquidiploid bridging hybrid. Proc Natl Acad Sci USA 87:9490–9496CrossRefGoogle Scholar
  119. deVicente MC, Tanksley SD (1991) Genome-wide reduction in recombination of backcross progeny derived from male versus female gametes in an interspecific cross of tomato. Theor Appl Genet 83:173–178Google Scholar
  120. deVicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596PubMedGoogle Scholar
  121. Dickinson MJ, Jones DA, Jones JD (1993) Close linkage between the Cf-2/Cf-5 and Mi resistance loci in tomato. Mol Plant Microbe Interact 6:341–347PubMedCrossRefGoogle Scholar
  122. Diwan N, Fluhr R, Eshed Y, Zamir D, Tanksley SD (1999) Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98:315–319CrossRefGoogle Scholar
  123. Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG (1996) The Tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451–459PubMedCrossRefGoogle Scholar
  124. Dixon MS, Hatzixanthis K, Jones DA, Harrison K, Jones JD (1998) The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number. Plant Cell 10(11):1915–1925PubMedCrossRefGoogle Scholar
  125. Doganlar S, Dodson J, Gabor B, Beck-Bunn T, Crossman C, Tanksley SD (1998) Molecular mapping of the py-1 gene for resistance to corky root rot (Pyrenochaeta lycopersici) in tomato. Theor Appl Genet 97:784–788CrossRefGoogle Scholar
  126. Doganlar S, Frary A, Tanksley SD (2000) The genetic basis of seedweight variation: tomato as a model system. Theor Appl Genet 100:1267–1273CrossRefGoogle Scholar
  127. Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD (2002a) A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711PubMedGoogle Scholar
  128. Doganlar S, Frary A, Ku HM, Tanksley SD (2002b) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202PubMedCrossRefGoogle Scholar
  129. Dorst JCEA (1946) Een en twintigste beschrijvende rassenlijst voor landbouwgewassen. Rijkscommissie voor de samenstelling van de rassenlijst voor landbouwgewassen, Wageningen, p 221Google Scholar
  130. Dunal MF (1813) Histoire naturelle, médicale et économique des Solanum et des genres qui ont été confundus avec eux. (as cited in Luckwill 1943)Google Scholar
  131. Dunal MF (1852) Solanaceae. In: De Candolle AP (ed) Prodromus systematis naturalis regni vegetabilis. 13:450Google Scholar
  132. Egashira H, Kuwashima A, Ishiguro H, Fukushima K, Kaya T, Imanishi S (2000) Screening of wild accessions resistant to gray mold (Botrytis cinerea Pers.) in Lycopersicon. Acta Physiol Plant 22:324–326CrossRefGoogle Scholar
  133. Ellis PR, Maxon-Smith JW (1971) Inheritance of resistance to potato cyst-eelworm (Heterodera rostochiensis Woll.) in the genus Lycopersicon. Euphytica 20:93–101CrossRefGoogle Scholar
  134. Ernst K, Kumar A, Kriseleit D, Kloos D-U, Phillips MS, Ganal MW (2002) The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region. Plant J 31(2):127–136PubMedCrossRefGoogle Scholar
  135. Eshed Y, Zamir D (1994) Introgressions from Lycopersicon pennellii can improve the soluble-solids yield of tomato hybrids. Theor Appl Genet 88:891–897CrossRefGoogle Scholar
  136. Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147–1162PubMedGoogle Scholar
  137. Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817PubMedGoogle Scholar
  138. Eshed Y, Gera G, Zamir D (1996) A genome-wide search for wild species alleles that increase horticultural yield of processing tomatoes. Theor Appl Genet 93:877–886CrossRefGoogle Scholar
  139. Estañ MT, Villalta I, Bolarín MC, Carbonell EA, Asins MJ (2009) Identification of fruit yield loci controlling the salt tolerance conferred by Solanum rootstocks. Theor Appl Genet 118:305–312PubMedCrossRefGoogle Scholar
  140. Farrar RR, Kennedy GG (1991) Insect and mite resistance in tomato. In: Kalloo G (ed) Genetic improvement of tomato of monographs on theoretical and applied genetics, vol 14. Springer, Berlin, Germany, pp 122–141Google Scholar
  141. Farris JS, Källersjö M, Kluge AG, Bult S (1995) Testing significance of incongruence. Cladistics 10:315–319CrossRefGoogle Scholar
  142. Fei Z, Tang X, Alba R, Giovannoni J (2006) Tomato expression database (TED): a suite of data presentation and analysis tools. Nucleic Acids Res 34:D766–D770PubMedCrossRefGoogle Scholar
  143. Finkers R, van den Berg P, van Berloo R, ten Have A, van Heusden AW, van Kan JAL, Lindhout P (2007a) Three QTLs for Botrytis cinerea resistance in tomato. Theor Appl Genet 114:585–593PubMedCrossRefGoogle Scholar
  144. Finkers R, van Heusden AW, Meijer-Dekens F, van Kan JAL, Maris P, Lindhout P (2007b) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114:1071–1080PubMedCrossRefGoogle Scholar
  145. Finkers R, Bai Y, van den Berg P, van Berloo R, Meijer-Dekens F, ten Have A, van Kan J, Lindhout P, van Heusden AW (2008) Quantitative resistance to Botrytis cinerea from Solanum neorickii. Euphytica 159:83–92CrossRefGoogle Scholar
  146. Folkertsma RT, Spassova MI, Prins M, Stevens MR, Hille J, Goldbach RW (1999) Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus. Mol Breed 5:197–207CrossRefGoogle Scholar
  147. Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss Organ Cult 76:101–119CrossRefGoogle Scholar
  148. Foolad MR (2005) Breeding for abiotic stress tolerances in tomato. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Haworth, New York, NY, USA, pp 613–684Google Scholar
  149. Foolad MR, Chen FQ (1998) RAPD markers associated with salt tolerance in an interspecific cross of tomato (Lycopersicon esculentum × L. pennellii). Plant Cell Rep 17:306–312CrossRefGoogle Scholar
  150. Foolad MR, Chen FQ (1999) RFLP mapping of QTLs conferring salt tolerance during the vegetative stage in tomato. Theor Appl Genet 99:235–243CrossRefGoogle Scholar
  151. Foolad MR, Jones RA (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87:184–192CrossRefGoogle Scholar
  152. Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hortic 695:225–240Google Scholar
  153. Foolad MR, Stoltz T, Dervinis C, Rodríguez RL, Jones RA (1997) Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol Breed 3:269–277CrossRefGoogle Scholar
  154. Foolad MR, Chen FQ, Lin GY (1998a) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144CrossRefGoogle Scholar
  155. Foolad MR, Chen FQ, Lin GY (1998b) RFLP mapping of QTLs conferring cold tolerance during seed germination in an interspecific cross of tomato. Mol Breed 4:519–529CrossRefGoogle Scholar
  156. Foolad MR, Zang LP, Lin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454PubMedCrossRefGoogle Scholar
  157. Foolad MR, Zang LP, Khan AA, Lin GY (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum × L. hirsutum cross. Theor Appl Genet 104:945–958PubMedCrossRefGoogle Scholar
  158. Foolad MR, Zang LP, Subbiah P (2003) Genetics of drought tolerance during seed germination in tomato: inheritance and QTL mapping. Genome 46:536–545PubMedCrossRefGoogle Scholar
  159. Fosberg FR (1987) New nomenclatural combinations for Galapagos plant species. Phytologia 62:181–183Google Scholar
  160. Frary A, Doganlar S (2003) Comparative genetics of crop plant domestication and evolution. Turk J Agric For 27:59–69Google Scholar
  161. Frary A, Graham E, Jacobs J, Chetelat RT, Tanksley SD (1998) Identification of QTL for late blight resistance from L. pimpinellifolium L3708. Tomato Genet Coop Rep 48:19–21Google Scholar
  162. Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289(5476):85–88Google Scholar
  163. Frary A, Doganlar S, Frampton A, Fulton T, Uhlig J, Yates H, Tanksley SD (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243PubMedCrossRefGoogle Scholar
  164. Frary A, Fulton TM, Zamir D, Tanksley SD (2004a) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496PubMedCrossRefGoogle Scholar
  165. Frary A, Fritz LA, Tanksley SD (2004b) A comparative study of the genetic bases of natural variation in tomato leaf, sepal, and petal morphology. Theor Appl Genet 109:523–533PubMedCrossRefGoogle Scholar
  166. Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley SD (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312PubMedCrossRefGoogle Scholar
  167. Frary A, Göl D, Keleş D, Okmen B, Pinar H, Siğva HO, Yemenicioğlu A, Doğanlar (2010) Salt tolerance in Solanum pennellii: antioxidant response and related QTL. BMC Plant Biol 10:58Google Scholar
  168. Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723PubMedCrossRefGoogle Scholar
  169. Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789PubMedCrossRefGoogle Scholar
  170. Frodin D (2004) History and concepts of big plant genera. Taxon 53:753–776CrossRefGoogle Scholar
  171. Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894CrossRefGoogle Scholar
  172. Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, López J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorum cross. Theor Appl Genet 100:1025–1042CrossRefGoogle Scholar
  173. Fulton TM, Bucheli E, Voirol E, López J, Pétiard V, Tanksley SD (2002a) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177CrossRefGoogle Scholar
  174. Fulton TM, van der Hoeven R, Eanetta NT, Tanksley SD (2002b) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467PubMedCrossRefGoogle Scholar
  175. Ganal MW, Tanksley SD (1996) Recombination around the TM2a and Mi resistance genes in different crosses of Lycopersicon peruvianum. Theor Appl Genet 92:101–108CrossRefGoogle Scholar
  176. Ganal MW, Simon R, Brommonschenkel S, Arndt M, Tanksley SD, Kumar A (1995) Genetic mapping of a wide spectrum nematode resistance gene (Hero) against Globodera rostochiensis in tomato. Mol Plant Microbe Interact 8:886–891PubMedCrossRefGoogle Scholar
  177. García-Martínez S, Andreani L, Garcia-Gusano M, Geuna F, Ruiz JJ (2006) Evaluation of amplified fragment length polymorphism and simple sequence repeats for tomato germplasm fingerprinting: utility for grouping closely related traditional cultivars. Genome 49:648–656PubMedCrossRefGoogle Scholar
  178. Garland S, Sharman M, Persley D, McGrath D (2005) The development of an improved PCR-based marker system for Sw-5, an important TSWV resistance gene of tomato. Aust J Agric Res 56:285–289CrossRefGoogle Scholar
  179. Georgiady MS, Whitkus RW, Lord EM (2002) Genetic analysis of traits distinguishing outcrossing and self-pollinating forms of currant tomato, Lycopersicon pimpinellifolium (Jusl.) Mill. Genetics 161:333–344PubMedGoogle Scholar
  180. Gerrior S, Bente L (2002) Nutrient content of the U.S. food supply, 1909–1999: a summary report. USDA, Center for Nutrition Policy and Promotion, Washington, DC, USAGoogle Scholar
  181. Gidoni D, Fuss E, Burbidge A, Speckmann GJ, James S, Nijkamp D, Mett A, Feiler J, Smoker M, de Vroomen MJ, Leader D, Liharska T, Groenendijk J, Coppoolse E, Smit JJ, Levin I, de Both M, Schuch W, Jones JD, Taylor IB, Theres K, van Haren MJ (2003) Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Mol Biol 51:83–98PubMedCrossRefGoogle Scholar
  182. Gilbert JC, McGuire DC (1956) Inheritance of resistance to several rootknot from Meloidogyne incognita in commercial type tomatoes. Proc Am Soc Hortic Sci 68:437–442Google Scholar
  183. Giovannoni JJ, Noensie EN, Ruezinsky DM, Lu X, Tracy SL, Ganal MW, Martin GB, Pillen K, Alpert K, Tanksley SD (1995) Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato: a first step in genetic map-based cloning of fruit ripening genes. Mol Gen Genet 248:195–206PubMedCrossRefGoogle Scholar
  184. Goldman IL, Paran I, Zamir D (1995) Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicon esculentum × Lycopersicon cheesmanii cross. Theor Appl Genet 90:925–932CrossRefGoogle Scholar
  185. Gonzalo MJ, van der Knaap E (2008) A comparative analysis into the genetic bases of morphology in tomato varieties exhibiting elongated fruit shape. Theor Appl Genet 116:647–656PubMedCrossRefGoogle Scholar
  186. Gorguet B, Eggink PM, Ocaña J, Tiwari A, Schipper D, Finkers R, Visser RGF, van Heusden AW (2008) Mapping characterization of novel parthenocarpy QTLs in tomato. Theor Appl Genet 116:755–767PubMedCrossRefGoogle Scholar
  187. Graham EB (2005) Genetic diversity and crossing relationships of Lycopersicon chilense. PhD Thesis, University of California, Davis, CA, USA, 157 pGoogle Scholar
  188. Graham EB, Shannon SM, Petersen JP, Chetelat RT (2003) A self-compatible population of Lycoperisicon peruvianum collected from N. Chile. Rep Tomato Genet Coop 53:22–24Google Scholar
  189. Grandillo S, Tanksley SD (1996a) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951CrossRefGoogle Scholar
  190. Grandillo S, Tanksley SD (1996b) Genetic analysis of RFLPs. GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965CrossRefGoogle Scholar
  191. Grandillo S, Ku HM, Tanksley SD (1996) Characterization of fs8.1, a major QTL influencing fruit shape in tomato. Mol Breed 2:251–260CrossRefGoogle Scholar
  192. Grandillo S, Ku HM, Tanksley SD (1999a) Identifying loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987CrossRefGoogle Scholar
  193. Grandillo S, Zamir D, Tanksley SD (1999b) Genetic improvement of processing tomatoes: a 20-year perspective. Euphytica 110:85–97CrossRefGoogle Scholar
  194. Grandillo S, Monforte AJ, Fridman E, Zamir D, Tanksley SD (2000) Agronomic characterization of a set of near-isogenic lines derived from a Lycopersicon esculentum × L. hirsutum cross. In: XLIV Convegno Annuale della Società Italiana di Genetica Agraria (SIGA), Bologna, Italy, 20–23 Sept 2000, p 78Google Scholar
  195. Grandillo S, Tanksley SD, Zamir D (2008) Exploitation of natural biodiversity through genomics. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, vol 1, Genomics approaches and platforms. Springer, Dordrecht, Netherlands, pp 121–150Google Scholar
  196. Grant V (1975) Genetics of flowering plants. Columbia University Press, New York, USAGoogle Scholar
  197. Griffiths PD, Scott JW (2001) Inheritance and linkage of Tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932. J Am Soc Hortic Sci 126:462–467Google Scholar
  198. Guo Z, Weston PA, Snyder JC (1993) Repellency to two-spotted spider mite, Tetranychus urticae Koch, as related to leaf surface chemistry of Lycopersicon hirsutum accessions. J Chem Ecol 19:2965–2979CrossRefGoogle Scholar
  199. Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLoS Biol 2(10):e245PubMedCrossRefGoogle Scholar
  200. Haanstra JPW, Laugé R, Meijer-Dekens F, Bonnema G, de Wit PJGM, Lindhout P (1999a) The Cf-ECP2 gene is linked to, but not part of the Cf-4/Cf-9 cluster on the short arm of chromosome 1 in tomato. Mol Gen Genet 262:839–845PubMedCrossRefGoogle Scholar
  201. Haanstra JPW, Wye C, Verbakel H, Meijer-Dekens F, van der Berg P, Odinot P, van Heusden AW, Tanksley S, Lindhout P, Peleman J (1999b) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicum esculentum × L. pennellii F2 populations. Theor Appl Genet 99:254–271CrossRefGoogle Scholar
  202. Haanstra JPW, Meijer-Dekens F, Laugé R, Seetanah DC, Joosten MHAJ, de Wit PJGM, Lindhout P (2000) Mapping strategy for resistance genes against Cladosporium fulvum on the short arm of chromosome 1 of tomato: Cf-ECP5 near the Hcr9 milky way cluster. Theor Appl Genet 101:661–668CrossRefGoogle Scholar
  203. Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniyappa V, Padmaja AS, Chen H, Kuo G, Fang D, Chen J (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hortic Sci 15:15–20Google Scholar
  204. Hanson P, Green SK, Kuo G (2006) Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop Rep 56:17–18Google Scholar
  205. Harlan JR, de Wet JMJ, Price EG (1973) Comparative evolution of cereals. Evolution 27:311–325CrossRefGoogle Scholar
  206. Hawkes JG (1990) The potato: evolution biodiversity and genetic resources. Belhaven, London, UKGoogle Scholar
  207. Hedrick UP, Booth NO (1907) Mendelian characters in tomatoes. Proc Am Soc Hortic Sci 5:19–24Google Scholar
  208. Heine H (1976) Flora de la Nouvelle Caledonie, vol 7. Museum National D’Histoire Naturelle, Paris, FranceGoogle Scholar
  209. Helentjaris T, King G, Slocum M, Siedenstrang C, Wegman S (1985) Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol Biol 5:109–118CrossRefGoogle Scholar
  210. Hemming MN, Basuki S, McGrath DJ, Carroll BJ, Jones DA (2004) Fine mapping of the tomato I-3 gene for fusarium wilt resistance and elimination of a co-segregating resistance gene analogue as a candidate for I-3. Theor Appl Genet 109:409–418PubMedCrossRefGoogle Scholar
  211. Hewitt JD, Garvey TC (1987) Wild sources of high soluble solids in tomato. In: Nevins DJ, Jones RA, Liss AR (eds) Tomato biotechnology, vol 4. Alan R Liss, New York, NY, USA, pp 45–54Google Scholar
  212. Hogenboom NG (1970) Inheritance of resistance to corky root in tomato (Lycopersicon esculentum UM Mill.). Euphytica 19:413–425CrossRefGoogle Scholar
  213. Holmes FO (1957) True-breeding resistance in tomato to infection by tobacco-mosaic virus. Phytopathology 47:16–17Google Scholar
  214. Holtan HEE, Hake S (2003) Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines. Genetics 165:1541–1550PubMedGoogle Scholar
  215. Hoogstraten JGJ, Braun CJ (2005) Methods for coupling resistance alleles in tomato. U.S. Patent Pending 20050278804. Date published 15 Dec 2005Google Scholar
  216. Huang CC, Cui YY, Weng CR, Zabel P, Lindhout P (2000a) Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor Appl Genet 101:918–924CrossRefGoogle Scholar
  217. Huang CC, Hoefs-Van De Putte PM, Haanstra-Van Der Meer JG, Meijer-Dekens F, Lindhout P (2000b) Characterization and mapping of resistance to Oidium lycopersicum in two Lycopersicon hirsutum accessions: evidence for close linkage of two Ol-genes on chromosome 6 of tomato. Heredity 85:511–520PubMedCrossRefGoogle Scholar
  218. Hunziker AT (1979) South American Solanaceae: a synoptic survey. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of Solanaceae. Academic, London, UK, pp 49–85Google Scholar
  219. Hunziker AT (2001) Genera Solanacearum, the genera of Solanaceae illustrated arranged according to a new system. ARG Gantner, Ruggell, GermanyGoogle Scholar
  220. Ignatova SI, Gorshkova NS, Tereshonkova TA (2000) Resistance of tomato F1 hybrids to grey mold. Acta Physiol Plant 22:326–328CrossRefGoogle Scholar
  221. Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M (2007) An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci USA 104:13833–13838PubMedCrossRefGoogle Scholar
  222. Jablonska B, Ammiraju JSS, Bhattarai KK, Mantelin S, de Ilarduya OM, Roberts PA, Kaloshian I (2007) The Mi-9 gene from Solanum arcanum conferring heat-stable resistance to root-knot nematodes is a homolog of Mi-1. Plant Physiol 143:1044–1054PubMedCrossRefGoogle Scholar
  223. Jenkins JA (1948) The origin of the cultivated tomato. Econ Bot 2:379–392CrossRefGoogle Scholar
  224. Jensen KS, Martin CT, Maxwell DP (2007) A CAPS marker, FER-G8, for detection of Ty3 and Ty3a alleles associated with S. chilense introgressions for begomovirus resistance in tomato breeding lines. University of Wisconsin-Madison.
  225. Ji Y, Chetelat RT (2003) Homoeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor Appl Genet 106:979–989PubMedGoogle Scholar
  226. Ji Y, Scott JW (2005) Identification of RAPD markers linked to Lycopersicon chilense derived begomovirus resistant gene on cromosome 6 of tomato. In: Ist international symposium on tomato diseases. Acta Hortic 695:407–416Google Scholar
  227. Ji Y, Scott JW (2007) Tomato. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement. Ser 4: Vegetable crops. CRC, Boca Raton, FL, USAGoogle Scholar
  228. Ji Y, Pertuzé R, Chetelat RT (2004) Genome differentiation by GISH in interspecic and intergeneric hybrids of tomato and related nightshades. Chrom Res 12:107–116PubMedCrossRefGoogle Scholar
  229. Ji Y, Schuster DJ, Scott JW (2007a) Ty-3, a begomovirus resistance locus near the Tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284CrossRefGoogle Scholar
  230. Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007b) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato infecting begomoviruses. In: Czosnek H (ed) Tomato Yellow Leaf Curl virus disease: management, molecular biology, breeding for resistance. Kluwer, Dordrecht, Netherlands, pp 343–362CrossRefGoogle Scholar
  231. Ji Y, Scott JW, Schuster DJ, Maxwell DP (2009a) Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of tomato. J Am Soc Hortic Sci 134(2):281–288Google Scholar
  232. Ji Y, Scott JW, Schuster DJ (2009b) Toward fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. HortScience 44(3):614–618Google Scholar
  233. Jiménez-Gómez JM, Alonso-Blanco C, Borja A, Anastasio G, Angosto T, Lozano R, Martínez-Zapater M (2007) Quantitative genetic analysis of flowering time in tomato. Genome 50:303–315PubMedCrossRefGoogle Scholar
  234. Jones DF (1917) Linkage in Lycopersicon. Am Nat 51:608–621CrossRefGoogle Scholar
  235. Jones DA, Dickinson MJ, Balint-Kurti PJ, Dixon MS, Jones JDG (1993) Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5, and Cf-9 genes for resistance to Cladosporium fulvum. Mol Plant Microbe Interact 6:348–357CrossRefGoogle Scholar
  236. Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793PubMedCrossRefGoogle Scholar
  237. Jussieu AL (1789) Genera plantarum. Herissant V & Barrios T, Paris, FranceGoogle Scholar
  238. Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504–510PubMedCrossRefGoogle Scholar
  239. Kabelka E, Yang W, Francis DM (2004) Improved tomato fruit color within an inbred backcross line derived from Lycopersicon esculentum and L. hirsutum involves the interaction of loci. J Am Soc Hortic Sci 129(2):250–257Google Scholar
  240. Kalloo G (1991) Genetic improvement of tomato. Springer, Berlin, GermanyGoogle Scholar
  241. Kalloo G, Banerjee MK (1990) Transfer of tomato leaf curl virus resistance from Lycopersicon hirsutum f. glabratum to L. esculentum. Plant Breed 105:156–159CrossRefGoogle Scholar
  242. Kamenetzky L, Asís R, Bassi S, de Godoy F, Bermúdez L, Fernie AR, Van Sluys MA, Vrebalov J, Giovannoni JJ, Rossi M, Carrari F (2010) Genomic analysis of wild tomato introgressions determining metabolism- and yield-associated traits. Plant Physiol 152(4):1772–1786PubMedCrossRefGoogle Scholar
  243. Kawchuk LM, Hachey J, Lynch DR (1998) Development of sequence characterized DNA markers linked to a dominant Verticillium wilt resistance gene in tomato. Genome 41:91–95PubMedCrossRefGoogle Scholar
  244. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci USA 98(11):6511–6515PubMedCrossRefGoogle Scholar
  245. Kebede H, Martin B (1994) Leaf anatomy of two Lycopersicon species with contrasting gas exchange properties. Crop Sci 34:108–113CrossRefGoogle Scholar
  246. Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72PubMedCrossRefGoogle Scholar
  247. Kennedy GG (2007) Resistance in tomato and other Lycopersicon species to insect and mite pests. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2, tomato. Science, Enfield, NH, USA, pp 488–519Google Scholar
  248. Kerr EA, Bailey DL (1964) Resistance to Cladosporium fulvum cke. obtained from wild species of tomato. Can J Bot 42(11):1541–1554CrossRefGoogle Scholar
  249. Khush GS (1963) Identification key for pachytene chromosomes of L. esculentum. Tomato Genet Coop Rep 13:12–13Google Scholar
  250. Khush GS, Rick CM (1963) Meiosis in hybrids between Lycopersicon esculentum and Solanum pennellii. Genetica 33:167–183CrossRefGoogle Scholar
  251. Khush GS, Rick CM (1966) The origin, identification, and cytogenetic behavior of tomato monosomics. Chromosoma 18:407–420CrossRefGoogle Scholar
  252. Khush GS, Rick CM (1968) Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23:452–484CrossRefGoogle Scholar
  253. Kinzer SM, Schwager SJ, Mutschler MA (1990) Mapping of ripening-related or -specific cDNA clones of tomato (Lycopersicon esculentum). Theor Appl Genet 79:489–496CrossRefGoogle Scholar
  254. Kiss L, Cook RTA, Saenz GS, Cunnington JH, Takamatsu S, Pascoe I, Bardin M, Nicot PC, Sato Y, Rossman AY (2001) Identification of two powdery mildew, Oidium neolycopersici sp. nov. and Oidium lycopersici, infecting tomato in different parts of the world. Mycol Res 105:684–697CrossRefGoogle Scholar
  255. Klein-Lankhorst R, Rietveld P, Machiels B, Verkerk R, Weide R, Gebhardt C, Koornneef M, Zabel P (1991) RFLP markers linked to the root knot nematode resistance gene Mi in tomato. Theor Appl Genet 81:661–667CrossRefGoogle Scholar
  256. Knapp S (1991) A revision of Solanum sessile species group (section Geminata pro parte: Solanaceae). Bot J Linn Soc 105:179–210CrossRefGoogle Scholar
  257. Knapp S (2000) A revision of Solanum thelopodium species group (section Anthoresis sensu Sheite, pro parte): Solanaceae. Bull Nat Hist Mus London (Bot) 30:13–30Google Scholar
  258. Knapp S (2002) Solanum section Geminata. FL Neotrop 84:1–405Google Scholar
  259. Knapp S, Darwin SC (2007) Proposal to conserve the name Solanum cheesmaniae (L. Riley) Fosberg against S. cheesmanii Geras. (Solanaceae). Taxon 55:806–807CrossRefGoogle Scholar
  260. Kole C, Ashrafi H, Lin G, Foolad M (2006) Identification and molecular mapping of a new R gene, Ph-4, conferring resistance to late blight in tomato. In: Solanaceae conference, University of Wisconsin, Madison, Abstr 449Google Scholar
  261. Koornneef M, Alonso-Blanco C, Vreugdenhil D (2004) Naturally occurring variation in Arabidopsis thaliana. Annu Rev Plant Biol 55:141–172PubMedCrossRefGoogle Scholar
  262. Krieger U, Lippman ZB, Zamir D (2010) The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato. Nat Genet 42(5):459–463PubMedCrossRefGoogle Scholar
  263. Ku HM, Doganlar S, Chen K-Y, Tanksley SD (1999) The genetic basis of pear-shaped tomato fruit. Theor Appl Genet 9:844–850CrossRefGoogle Scholar
  264. Ku HM, Grandillo S, Tanksley SD (2000) fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor Appl Genet 101:873–878CrossRefGoogle Scholar
  265. Labate JA, Grandillo S, Fulton T, Muños S, Caicedo AL, Peralta I, Ji Y, Chetelat RT, Scott JW, Gonzalo MJ, Francis D, Yang W, van der Knaap E, Baldo AM, Smith-White B, Mueller LA, Prince JP, Blanchard NE, Storey DB, Stevens MR, Robbins MD, Wang JF, Liedl BE, O’Connell MA, Stommel JR, Aoki K, Iijima Y, Slade AJ, Hurst SR, Loeffler D, Steine MN, Vafeados D, McGuire C, Freeman C, Amen A, Goodstal J, Facciotti D, Van Eck J, Causse M (2007) Tomato. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5, Vegetables. Springer, Berlin, Germany, pp 1–96Google Scholar
  266. Lanfermeijer FC, Dijkhuis J, Sturre MJG, de Haan P, Hille J (2003) Cloning and characterization of the durable Tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol Biol 52:1037–1049PubMedCrossRefGoogle Scholar
  267. Lanfermeijer FC, Jiang G, Ferwerda MA, Dijkhuis J, de Haan P, Yang R, Hille J (2004) The durable resistance gene Tm-2 2 from tomato confers resistance against ToMV in tobacco and preserves its viral specificity. Plant Sci 167:687–692CrossRefGoogle Scholar
  268. Lanfermeijer FC, Warmink J, Hille J (2005) The products of the broken Tm-2 and the durable Tm-2 2 resistance genes from tomato differ in four amino acids. J Exp Bot 56:2925–2933PubMedCrossRefGoogle Scholar
  269. Langford AN (1937) The parasitism of Cladosporium fulvum Cooke and the genetics of resistance to it. Can J Res 15:108–128CrossRefGoogle Scholar
  270. Laterrot H (1976) Localisation chromosomique de 12 chez la tomate controlant Ia resistance au pathotype 2 de Fusarium oxysporum f. lycopersici. Ann Amelior Plant 26:485–491Google Scholar
  271. Laterrot H (1983) La lutte genetique contre la maladie des racines liegueses de la tomate. Rev Hortic 238:143–150Google Scholar
  272. Laterrot H (2000) Disease resistance in tomato: practical situation. Acta Physiol Plant 22(3):328–331CrossRefGoogle Scholar
  273. Laugé R, Dmitriev AP, Joosten MHAJ, De Wit PJGM (1998a) Additional resistance gene(s) against Cladosporium fulvum present on the Cf-9 introgression segment are associated with strong PR protein accumulation. Mol Plant Microbe Interact 11(4):301–308CrossRefGoogle Scholar
  274. Laugé R, Joosten MHAJ, Haanstra JPW, Goodwin PH, Lindhout P, De Wit PJGM (1998b) Successful search for a resistance gene in tomato targeted against a virulence factor of a fungal pathogen. Proc Natl Acad Sci USA 95:9014–9018PubMedCrossRefGoogle Scholar
  275. Laugé R, Goodwin PH, De Wit PJGM, Joosten MHAJ (2000) Specific HR-associated recognition of secreted proteins from Cladosporium fulvum occurs in both host and non-host plants. Plant J 23:735–745PubMedCrossRefGoogle Scholar
  276. Lawson DM, Lunde CF, Mutschler MA (1997) Marker-assisted transfer of acylsugar-mediated pest resistance from the wild tomato, Lycopersicon pennellii, to the cultivated tomato, Lycopersicon esculentum. Mol Breed 3:307–317CrossRefGoogle Scholar
  277. Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004a) Marker-assisted introgression of five QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668PubMedCrossRefGoogle Scholar
  278. Lecomte L, Saliba-Colombani V, Gautier A, Gomez-Jimenez MC, Duffé P, Buret M, Causse M (2004b) Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato. Mol Breed 13:1–14CrossRefGoogle Scholar
  279. Levesque H, Vedel E, Mathieu C, de Coureel AJL (1990) Identification of a short rDNA spacer sequence highly specific of a tomato line containing Tm-1 gene introgressed from Lycopersicon hirsutum. Theor Appl Genet 80:602–608CrossRefGoogle Scholar
  280. Levin I, Gilboa N, Teselson E, Shen S, Schaffer AA (2000) Fgr, a major locus that modifies fructose to glucose ratio in mature tomato fruits. Theor Appl Genet 100:256–262CrossRefGoogle Scholar
  281. Levin I, Lalazar A, Bar M, Schaffer AA (2004) Non GMO fruit factories strategies for modulating metabolic pathways in the tomato fruit. Ind Crops Products 20:29–36CrossRefGoogle Scholar
  282. Lim GTT, Wang GP, Hemming MN, McGrath DJ, Jones DA (2008) High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3. Theor Appl Genet 118(1):57–75PubMedCrossRefGoogle Scholar
  283. Lincoln RE, Porter JW (1950) Inheritance of beta-carotene in tomatoes. Genetics 35:206–211PubMedGoogle Scholar
  284. Lindhout P, Pet G, Van der Beek H (1994a) Screening wild Lycopersicon species for resistance to powdery mildew (Oidium lycopersicum). Euphytica 72:43–49CrossRefGoogle Scholar
  285. Lindhout P, Van der Beek H, Pet G (1994b) Wild Lycopersicon species as sources for resistance to powdery mildew (Oidium licopersicum): mapping of the resistance gene Ol-1 on cromosome 6 of L. hirsutum. Acta Hortic 376:387–394Google Scholar
  286. Lindhout P, Heusden S, Pet G, Ooijen JW, Sandbrink H, Verkerk R, Vrielink R, Zabel P (1994c) Perspectives of molecular marker assisted breeding for earliness in tomato. Euphytica 79:279–286CrossRefGoogle Scholar
  287. Linkage Committee (1973) Linkage summary. Tomato Genet Coop 23:9–11Google Scholar
  288. Linnaeus C (1753) Species plantarum, 1st edn. L. Salvius, Stockholm, SwedenGoogle Scholar
  289. Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422PubMedGoogle Scholar
  290. Lippman ZB, Zamir D (2007) Heterosis: revisiting the magic. Trends Genet 23:60–66PubMedCrossRefGoogle Scholar
  291. Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552PubMedCrossRefGoogle Scholar
  292. Liu Y, Zamir D (1999) Second generation L. pennellii introgression lines and the concept of bin mapping. Rep Tomato Genet Coop 49:26–30Google Scholar
  293. Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306PubMedCrossRefGoogle Scholar
  294. Liu J, Gur A, Ronen G, Causse M, Damidaux R, Buret M, Hirschberg J, Zamir D (2003) There is more to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J 1:195–207PubMedCrossRefGoogle Scholar
  295. Livingstone KD, Lackney VK, Blauth JR, Van Wijk RIK, Kyle Jahn M (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202PubMedGoogle Scholar
  296. Lobo MA, Navarro R (1987) Late blight horizontal resistance in L. esculentum × L. hirsutum hybrids. Tomato Genet Coop Rep 37:52–54Google Scholar
  297. Loh YT, Martin G (1995) The disease-resistance gene Pto and the fenthion-sensitivity gene Fen encode closely related functional protein kinases. Proc Natl Acad Sci USA 92:4181–4184PubMedCrossRefGoogle Scholar
  298. Lough RC (2003) Inheritance of tomato late blight resistance in Lycopersicon hirsutum LA1033. Thesis, North Carolina State University, Raleigh, NC, USA.
  299. Luckwill LC (1943) The genus Lycopersicon: an historical, biological, and taxonomical survey of the wild and cultivated tomatoes. Aberdeen Univ Stud 120:1–44Google Scholar
  300. Lukyanenko AN (1991) Disease resistance in tomato. In: Kalloo G (ed) Genetic improvement of tomato, vol 14, Monographs on theoretical and applied genetics. Springer, Berlin, Germany, pp 99–119Google Scholar
  301. MacBride JF (1962) Solanaceae. In: Flora of Peru. Field Mus Nat Hist Bot Ser 13:3–267Google Scholar
  302. Maliepaard C, Bas N, Van Heusden S, Kos J, Pet G, Verkerk R, Vrielink R, Zabel P, Lindhout P (1995) Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhouse whitefly) resistance in an F2 from Lycopersicon esculentum × Lycopersicon hirsutum f. glabratum. Heredity 75:425–433CrossRefGoogle Scholar
  303. Mangin B, Thoquet P, Olivier J, Grimsley NH (1999) Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172PubMedGoogle Scholar
  304. Marshall JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222CrossRefGoogle Scholar
  305. Martin B, Nienhuis J, King G, Schaefer A (1989) Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243(4899):1725–1728PubMedCrossRefGoogle Scholar
  306. Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA 88:2336–2340PubMedCrossRefGoogle Scholar
  307. Martin GB, Brommonschenkel S, Chunwongse J, Frary A, Ganal M, Spivey R, Wu T, Earle E, Tanksley S (1993) Map-based cloning of a protein-kinase gene conferring disease resistance in tomato. Science 262:1432–1436PubMedCrossRefGoogle Scholar
  308. Martin B, Tauer CG, Lin RK (1999) Carbon isotope discrimination as a tool to improve water-use efficiency in tomato. Crop Sci 39:1775–1783CrossRefGoogle Scholar
  309. Mathieu S, Dal Cin V, Fei Z, Li H, Bliss P, Taylor MG, Klee HJ, Tieman DM (2009) Flavour compounds in tomato fruits: identification of loci and potential pathways affecting volatile composition. J Exp Bot 60(1):325–337PubMedCrossRefGoogle Scholar
  310. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123(2):439–442PubMedCrossRefGoogle Scholar
  311. McClean PE, Hanson MR (1986) Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species. Genetics 112:649–667PubMedGoogle Scholar
  312. McCouch S (2004) Diversifying selection in plant breeding. PLoS Biol 2(10):e347PubMedCrossRefGoogle Scholar
  313. McGrath DJ, Gillespie D, Vawdrey L (1987) Inheritance of resistance to Fusarium oxysporium f.sp. lycopersici races 2 and 3 in Lycopersicon pennellii. Aust J Agric Res 38(4):729–733CrossRefGoogle Scholar
  314. Medina-Filho P (1980) Linkage of Aps-1, Mi and other markers on chromosome 6. Tomato Genet Coop Rep 30:26–28Google Scholar
  315. Menda N, Semel Y, Peled D, Eshed Y, Zamir D (2004) In silico screening of a saturated mutation library of tomato. Plant J 38(5):861–872PubMedCrossRefGoogle Scholar
  316. Menzel MY (1962) Pachytene chromosomes of the intergeneric hybrid Lycopersicon esculentum × Solanum lycopersicoides. Am J Bot 49:605–615CrossRefGoogle Scholar
  317. Mesbah LA, Kneppers TJA, Takken FLW, Laurent P, Hille J, Nijkamp HJJ (1999) Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum). Mol Gen Genet 261:50–57PubMedCrossRefGoogle Scholar
  318. Messeguer R, Ganal M, de Vicente MC, Young ND, Bolkan H, Tanksley SD (1991) High resolution RFLP map around the root knot nematode resistance gene (Mi) in tomato. Theor Appl Genet 82:529–536CrossRefGoogle Scholar
  319. Michelson I, Zamir D, Czosnek H (1994) Accumulation and translocation of tomato yellow leaf curl virus (TYLCV) in a Lycopersicon esculentum breeding line containing the L. chilense TYLCV tolerance gene Ty-1. Phytopathology 84(9):928–933CrossRefGoogle Scholar
  320. Miller P (1731) The Gardener’s dictionary, 1st edn. John and Francis, Rivington, London, UKGoogle Scholar
  321. Miller P (1754) The Gardener’s dictionary, Abridged 4th edn. John and James. Rivington, London, UKGoogle Scholar
  322. Miller P (1807) The Gardener’s and botanist’s dictionary, Posthumous edn. Thomas Martyn, Cambridge, UKGoogle Scholar
  323. Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448Google Scholar
  324. Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Valerie M, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1319PubMedCrossRefGoogle Scholar
  325. Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113PubMedCrossRefGoogle Scholar
  326. Monforte AJ, Tanksley SD (2000a) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813PubMedGoogle Scholar
  327. Monforte AJ, Tanksley SD (2000b) Fine mapping of a quantitative trait locus (QTL) from Lycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479CrossRefGoogle Scholar
  328. Monforte AJ, Asins AJ, Carbonell EA (1996) Salt tolerance in Lycopersicon species IV. Efficiency of marker-assisted selection for salt tolerance improvement. Theor Appl Genet 93:765–772CrossRefGoogle Scholar
  329. Monforte AJ, Asins AJ, Carbonell EA (1997a) Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis? Theor Appl Genet 95:284–293CrossRefGoogle Scholar
  330. Monforte AJ, Asins AJ, Carbonell EA (1997b) Salt tolerance in Lycopersicon species VI. Genotype-by-salinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theor Appl Genet 95:706–713CrossRefGoogle Scholar
  331. Monforte AJ, Asins AJ, Carbonell EA (1999) Salt tolerance in Lycopersicon spp VII. Pleiotropic action of genes controlling earliness on fruit yield. Theor Appl Genet 98:593–601CrossRefGoogle Scholar
  332. Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590CrossRefGoogle Scholar
  333. Moreau P, Thoquet P, Olivier J, Laterrot H, Grimsley N (1998) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol Plant Microbe Interact 11(4):259–269CrossRefGoogle Scholar
  334. Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219PubMedCrossRefGoogle Scholar
  335. Moyle LC (2007) Comparative genetics of potential prezygotic and postzygotic isolating barriers in a Lycopersicon Species cross. J Hered 98(2):123–135PubMedCrossRefGoogle Scholar
  336. Moyle LC (2008) Ecological and evolutionary genomics in the wild tomatoes (Solanum sect. Lycopersicon). Evolution 62(12):2995–3013PubMedCrossRefGoogle Scholar
  337. Moyle LC, Graham EB (2005) Genetics of hybrid incompatibility between Lycopersicon esculentum and L. hirsutum. Genetics 169:355–373PubMedCrossRefGoogle Scholar
  338. Moyle LC, Nakazato T (2008) Comparative genetics of hybrid incompatibility: sterility in two Solanum species crosses. Genetics 179:1437–1453PubMedCrossRefGoogle Scholar
  339. Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Bins J, Lin C, Wright MH, Ahrens R, Wang Y et al (2005a) The SOL genomics network (SGN): a comparative resource for Solanaceous biology and beyond. Plant Physiol 138:1310–1317PubMedCrossRefGoogle Scholar
  340. Mueller LA, Tanksley SD, Giovannoni JJ, van Eck J, Stack S, Choi D, Kim BD, Chen M, Cheng Z, Li C, Ling H, Xue Y, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh NK, Stiekema W, Lindhout P, Jesse T, Lankhorst RK, Bouzayen M, Shibata D, Tabata S, Granell A, Botella MA, Giuliano G, Frusciante L, Causse M, Zamir D (2005b) The tomato sequencing project, the first cornerstone of the international Solanaceae project (SOL). Comp Funct Genom 6(3):153–158CrossRefGoogle Scholar
  341. Mueller LA, Klein Lankhorst R, Tanksley SD, Giovanonni JJ et al (2009) A snapshot of the emerging tomato genome sequence: the tomato genome sequencing consortium. Plant Genome 2:78–92CrossRefGoogle Scholar
  342. Muigai SG, Bassett MJ, Schuster DJ, Scott JW (2003) Greenhouse and field screening of wild Lycopersicon germplasm for resistance to the whitefly Bemisia argentifolii. Phytoparasitica 31(1):27–38CrossRefGoogle Scholar
  343. Müller CH (1940) A revision of the genus Lycopersicon. USDA Misc Publ 382:1–28Google Scholar
  344. Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–157PubMedCrossRefGoogle Scholar
  345. Mutschler MA (2006) Combining field and laboratory methods in tomato breeding strategies. Acta Hortic 724:23–27Google Scholar
  346. Mutschler MA, Tanksley SD, Rick CM (1987) Linkage maps of the tomato (Lycopersicon esculentum). Rep Tomato Genet Coop 37:5–34Google Scholar
  347. Mutschler MA, Doerge RW, Liu S-C, Kuai JP, Liedl BE, Shapiro JA (1996) QTL analysis of pest resistance in the wild tomato Lycopersicon pennellii: QTLs controlling acylsugar level and composition. Theor Appl Genet 92:709–718CrossRefGoogle Scholar
  348. Nakazato T, Bogonovich M, Moyle LC (2008) Environmental factors predict adaptive phenotypic differentiation within and between two wild Andean tomatoes. Evolution 62(4):774–792PubMedCrossRefGoogle Scholar
  349. Nash AF, Gardner RG (1988) Tomato early blight resistance in a breeding line derived from Lycopersicon hirsutum PI 126445. Plant Dis 72:206–209CrossRefGoogle Scholar
  350. Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379PubMedGoogle Scholar
  351. Nienhuis J, Helentjarims M, Slocum B, Ruggero B, Schaffer A (1987) Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci 27:797–803CrossRefGoogle Scholar
  352. Nuez F, Prohens J, Blanca JM (2004) Relationships, origin, and diversity of Galapagos tomatoes: implications for the conservation of natural populations. Am J Bot 91:86–99PubMedCrossRefGoogle Scholar
  353. Ohmori T, Murata M, Motoyoshi F (1996) Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor Appl Genet 92:151–156CrossRefGoogle Scholar
  354. Olmstead RG, Palmer JD (1997) Implications for phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Syst Bot 22:19–29CrossRefGoogle Scholar
  355. Olmstead RG, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV: advances in biology and utilization. Royal Botanic Gardens, Kew, pp 111–137Google Scholar
  356. Ori N, Eshed Y, Paran I, Presting G, Aviv D, Tanksley S, Zamir D, Fluhr R (1997) The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9:521–532PubMedCrossRefGoogle Scholar
  357. Orsi CH, Tanksley SD (2009) Natural variation in an ABC transporter gene associated with seed size evolution in tomato species. PLoS Genet 5(1):e1000347PubMedCrossRefGoogle Scholar
  358. Osborn TC, Alexander DC, Fobes JF (1987) Identification of restriction fragment length polymorphisms linked to genes controlling soluble solids content in tomato fruit. Theor Appl Genet 73:350–356CrossRefGoogle Scholar
  359. Osborn TC, Kramer C, Graham E, Braun CJ (2007) Insights and innovations from wide crosses: examples from canola and tomato. Crop Sci 47(S3):S228–S237Google Scholar
  360. Paddock EF (1950) A tentative assignment of Fusarium-immunity locus to linkage group 5 in tomato. Genetics 35:683–684Google Scholar
  361. Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79:5006–5010PubMedCrossRefGoogle Scholar
  362. Pan Q, Liu Y-S, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322PubMedGoogle Scholar
  363. Paran I, Goldman I, Tanksley SD, Zamir D (1995) Recombinant inbred lines for genetic mapping in tomato. Theor Appl Genet 90:542–548CrossRefGoogle Scholar
  364. Paran I, Goldman I, Zamir D (1997) QTL analysis of morphological traits in a tomato recombinant inbred line population. Genome 40:242–248PubMedCrossRefGoogle Scholar
  365. Parniske M, Hammond-Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K, Wulff BBH, Jones JDG (1997) Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf- 4/9 locus of tomato. Cell 91:821–832PubMedCrossRefGoogle Scholar
  366. Parrella G, Ruffel S, Moretti A, Morel C, Palloix A, Caranta C (2002) Recessive resistance genes against potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes. Theor Appl Genet 105:855–861PubMedCrossRefGoogle Scholar
  367. Parrella G, Moretti A, Gognalons P, Lesage M-L, Marchoux G, Gebre-Selassie K, Caranta C (2004) The Am gene controlling resistance to Alfalfa mosaic virus in tomato is located in the cluster of dominant resistance genes on chromosome 6. Phytopathology 94:345–350PubMedCrossRefGoogle Scholar
  368. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726PubMedCrossRefGoogle Scholar
  369. Paterson AH, DeVerna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–741PubMedGoogle Scholar
  370. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197PubMedGoogle Scholar
  371. Patterson BD (1988) Genes for cold resistance from wild tomatoes. HortScience 23:794–947Google Scholar
  372. Peirce LC (1971) Linkage test with Ph conditioning resistance to race 0 Phytophthora infestans. Rep Tomato Genet Coop 21:30Google Scholar
  373. Peleman JD, van der Voort JR (2003) Breeding by deisgn. Trends Plant Sci 8:330–334PubMedCrossRefGoogle Scholar
  374. Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [MILL.] Wettst. Subsection Lycopersicon). Am J Bot 88(10):1888–1902PubMedCrossRefGoogle Scholar
  375. Peralta IE, Spooner DM (2005) Morphological characterization and relationships of wild tomatoes (Solanum L. Sect. Lycopersicon). American Phytopathology Society (APS), St. Paul, MN, USA, 32 pGoogle Scholar
  376. Peralta IE, Spooner DM (2007) History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2, tomato. Science, Enfield, NH, USA, pp 1–27Google Scholar
  377. Peralta IE, Knapp S, Spooner DM (2005) New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from Northern Peru. Syst Bot 30(2):424–434CrossRefGoogle Scholar
  378. Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sections Lycopersicoides, Juglandifolia, Lycopersicon; Solanaceae). Syst Bot Monogr 84:1–186Google Scholar
  379. Pereira NE, Leal NR, Pereira MG (2000) Controle genético da concentração de 2-tridecanona e de 2-undecanona em cruzamentos interespecifícos de tomateiro. Bragantia 59(2):165–172CrossRefGoogle Scholar
  380. Pertuzé RA, Ji Y, Chetelat RT (2002) Comparative linkage map of the Solanum lycopersicoides and S. sitiens genomes and their differentiation from tomato. Genome 45:1003–1012PubMedCrossRefGoogle Scholar
  381. Pertuzé RA, Ji Y, Chetelat RT (2003) Transmission and recombination of homeologous Solanum sitiens chromosomes in tomato. Theor Appl Genet 107:1391–1401PubMedCrossRefGoogle Scholar
  382. Peters JL, Széll M, Kendrick RE (1998) The expression of light-regulated genes in the high-pigment-1 mutant of tomato. Plant Physiol 117:797–807PubMedCrossRefGoogle Scholar
  383. Peterson DG, Price HJ, Johnston JS, Stack SM (1996) DNA content of heterochromatin and euchromatin in tomato (Lycopersicon esculentum) pachytene chromosomes. Genome 39:77–82PubMedCrossRefGoogle Scholar
  384. Pillen K, Ganal MW, Tanksley SD (1996a) Construction of a high-resolution genetic map and YAC-contigs in the tomato Tm-2a region. Theor Appl Genet 93:228–233CrossRefGoogle Scholar
  385. Pillen K, Pineda O, Lewis CB, Tanksley SD (1996b) Status of genome mapping tools in the taxon Solanaceae. In: Paterson AH (ed) Genome mapping in plants. RG Landes, Austin, TX, pp 282–308Google Scholar
  386. Pitblado RE, MacNeil BH, Kerr EA (1984) Chromosomal identity and linkage relationships of Pto, a gene for resistance to Pseudomonas syringae pv. tomato in tomato. Can J Plant Pathol 6:48–53CrossRefGoogle Scholar
  387. Plunknett DL, Smith NJH, Williams JT, Murthi-Anishetti N (1987) Gene banks and the world’s food. Princeton University Press, Princeton, NJ, USAGoogle Scholar
  388. Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125:1979–1989PubMedGoogle Scholar
  389. Powers L (1941) Inheritance of quantitative characters in crosses involving two species of Lycopersicon. J Agric Res 63:149–175Google Scholar
  390. Prudent M, Causse M, Génard M, Tripodi P, Grandillo S, Bertin N (2009) Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection. J Exp Bot 60(3):923–937PubMedCrossRefGoogle Scholar
  391. Ranc N, Muños S, Santoni S, Causse M (2008) A clarified position for Solanum lycopersicum var. cerasiforme in the evolutionary history of tomatoes (Solanaceae). BMC Plant Biol 8:130PubMedCrossRefGoogle Scholar
  392. Rick CM (1951) Hybrid between Lycopersicoides esculentum Mill. and Solanum lycopersicoides Dun. Genetics 37:741–744Google Scholar
  393. Rick CM (1956) Genetic and systematic studies on accessions of Lycopersicon from the Galapagos islands. Am J Bot 43:687–696CrossRefGoogle Scholar
  394. Rick CM (1963) Barriers to interbreeding in Lycopersicon peruvianum. Evolution 17:216–232CrossRefGoogle Scholar
  395. Rick CM (1969) Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum: segregation and recombination. Genetics 62:753–768PubMedGoogle Scholar
  396. Rick CM (1971) Further studies on segregation and recombination in backcross derivatives of a tomato species hybrid. Biol Zentralbl 90:209–220Google Scholar
  397. Rick CM (1973) Potential genetic resources in tomato species: clues from observation in native habitats. In: Srb AM (ed) Genes, enzymes and populations. Plenum, New York, NY, USA, pp 255–269Google Scholar
  398. Rick CM (1974) High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42:493–510Google Scholar
  399. Rick CM (1975) The tomato. In: King RC (ed) Handbook of genetics, vol 2. Plenum, New York, NY, USA, pp 247–280Google Scholar
  400. Rick CM (1976) Tomato Lycopersicon esculentum (Solanaceae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, UK, pp 268–273Google Scholar
  401. Rick CM (1979) Biosystematic studies in Lycopersicon and closely related species of Solanum. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of Solanaceae, Linn Soc Symp Ser 7. Academic, New York, NY, USA, pp 667–677Google Scholar
  402. Rick CM (1982) The potential of exotic germplasm for tomato improvement. In: Vasil IK, Scowcroft WR, Frey KJ (eds) Plant improvement and somatic cell genetics. Academic, New York, NY, pp 1–28Google Scholar
  403. Rick CM (1986a) Germplasm resources in the wild tomato species. Acta Hortic 190:39–47Google Scholar
  404. Rick CM (1986b) Potential contributions of wide crosses to improvement of processing tomatoes. HortScience 21:881Google Scholar
  405. Rick CM (1986c) Reproductive isolation in the Lycopersicon peruvianum complex. In: D'Arcy WG (ed) Solanaceae biology and systematics. Columbia University Press, New York, NY, USA, pp 477–496Google Scholar
  406. Rick CM (1987) Seedling traits of primary trisomics. Rep Tomato Genet Coop 37:60–61Google Scholar
  407. Rick CM (1988) Tomato-like nightshades: affinities, autoecology, and breeders opportunities. Econ Bot 42:145–154CrossRefGoogle Scholar
  408. Rick CM (1990) New or otherwise noteworthy accessions of wild tomato species. Tomato Genet Coop Rep 40:30Google Scholar
  409. Rick CM (1995) Tomato. In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman, London, pp 452–457Google Scholar
  410. Rick CM, Chetelat RT (1995) Utilization of related wild species for tomato improvement. Acta Hortic 412:21–38Google Scholar
  411. Rick CM, Fobes JF (1975) Allozyme variation in the cultivated tomato and closely related species. Bull Torr Bot Club 102:376–384CrossRefGoogle Scholar
  412. Rick CM, Holle M (1990) Andean Lycopersicon esculentum var. cerasiforme: genetic variation and its evolutionary significance. Econ Bot 44:69–78CrossRefGoogle Scholar
  413. Rick CM, Tanksley SD (1981) Genetic variation in Solanum pennellii: comparisons with two other sympatric tomato species. Plant Syst Evol 139:11–45CrossRefGoogle Scholar
  414. Rick CM, Yoder JI (1988) Classical and molecular genetics of tomato: highlights and perspectives. Annu Rev Genet 22:281–300PubMedCrossRefGoogle Scholar
  415. Rick CM, Kesicki E, Fobes JF, Holle M (1976) Genetic and biosystematic studies on two new sibling species of Lycopersicon from interandean Peru. Theor Appl Genet 47:55–68CrossRefGoogle Scholar
  416. Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Syst Evol 127:139–170CrossRefGoogle Scholar
  417. Rick CM, Holle M, Thorp RW (1978) Rates of cross-pollination in Lycopersicon pimpinellifolium: impact of genetic variation in floral characters. Plant Syst Evol 129:31–44CrossRefGoogle Scholar
  418. Rick CM, Fobes JF, Tanksley SD (1979) Evolution of mating systems in Lycopersicon hirsutum as deduced from genetic variation in electrophoretic and morphological characters. Plant Syst Evol 132:279–298CrossRefGoogle Scholar
  419. Rick CM, Laterrot H, Philouze J (1990) A revised key for the Lycopersicon species. Tomato Genet Coop Rep 40:31Google Scholar
  420. Rivas S, Thomas CM (2005) Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum. Annu Rev Phytopathol 43:395–436PubMedCrossRefGoogle Scholar
  421. Robert VJM, West MAL, Inai S, Caines A, Arntzen L, Smith JK, St.Clair DA (2001) Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217–233CrossRefGoogle Scholar
  422. Robertson NF (1991) The challenge of Phytophthora infestans. In: Ingram DS, Williams PH (eds) Advances in plant pathology, vol 10. Academic, London, pp 1–30Google Scholar
  423. Robertson LD, Labate JA (2007) Genetic resources of tomato (Lycopersicon esculentum var. esculentum) and wild relatives. In: Razdan MK, Mattoo AK (eds.) Genetic improvement of Solanaceous crops, vol 2: Tomato. Science, Enfield, NH, USA, pp 25–75Google Scholar
  424. Ronen GL, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351PubMedCrossRefGoogle Scholar
  425. Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107PubMedCrossRefGoogle Scholar
  426. Rossi M, Goggin FL, Milligan SB, Kaloshian I, Ullman DE, Williamson VM (1998) The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc Natl Acad Sci USA 95:9750–9754PubMedCrossRefGoogle Scholar
  427. Rousseaux MC, Jones CM, Adams D, Chetelat R, Bennett A, Powell A (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408PubMedCrossRefGoogle Scholar
  428. Ruffel S, Gallois JL, Lesage ML, Caranta C (2005) The recessive potyvirus resistance gene pot-1 is the tomato orthologue of the pepper pvr2-eIF4E gene. Mol Genet Genom 274:346–353CrossRefGoogle Scholar
  429. Rush DW, Epstein E (1981) Breeding and selection for salt tolerance by the incorporation of wild germplasm into a domestic tomato. J Am Soc Hortic Sci 106:699–704Google Scholar
  430. Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29–40PubMedCrossRefGoogle Scholar
  431. Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272CrossRefGoogle Scholar
  432. Sallaud C, Rontein D, Onillon S, Jabès F, Duffé P, Giacalone C, Thoraval S, Escoffier C, Herbette G, Leonhardt N, Causse M, Tissiera A (2009) A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesyl pyrophosphate in the wild tomato Solanum habrochaites. Plant Cell 21:301–317PubMedCrossRefGoogle Scholar
  433. Salmeron J, Oldroyd G, Rommens C, Scofield S, Kim H-S, Lavelle D, Dahlbeck D, Staskawicz B (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133PubMedCrossRefGoogle Scholar
  434. Sandbrink JM, van Ooijen JW, Purimahua CC, Vrielink M, Verkerk R, Zabel P, Lindhout P (1995) Localization of genes for bacterial canker resistance in Lycopersicon peruvianum using RFLPs. Theor Appl Genet 90:444–450CrossRefGoogle Scholar
  435. Sanseverino W, Roma G, De Simone M, Faino L, Melito S, Stupka E, Frusciante L, Ercolano MR (2010) PRGdb: a bioinformatics platform for plant resistance gene analysis. Nucleic Acids Res 38:D814–D821PubMedCrossRefGoogle Scholar
  436. Sarfatti M, Katan J, Fluhr R, Zamir D (1989) An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theor Appl Genet 78:755–759CrossRefGoogle Scholar
  437. Sarfatti M, Abu-Abied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor Appl Genet 82:22–26CrossRefGoogle Scholar
  438. Schauer N, Zamir D, Fernie AR (2005) Metabolic profiling of leaves and fruits of wild species tomato: a survey of the Solanum lycopersicum complex. J Exp Bot 56:297–307PubMedCrossRefGoogle Scholar
  439. Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454PubMedCrossRefGoogle Scholar
  440. Schauer N, Semel Y, Balbo I, Steinfath M, Repsilber D, Selbig J, Pleban T, Zamir D, Fernie AR (2008) Mode of inheritance of primary metabolic traits in tomato. Plant Cell 20:509–523PubMedCrossRefGoogle Scholar
  441. Schornack S, Ballvora A, Gürlebeck D, Peart J, Baulcombe D, Ganal M, Baker B, Bonas U, Lahaye T (2004) The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3. Plant J 37(1):46–60, Erratum Plant J 37(5):787PubMedCrossRefGoogle Scholar
  442. Schumacher K, Ganal M, Theres K (1995) Genetic and physical mapping of the lateral suppressor (ls) locus in tomato. Mol Gen Genet 246:761–766PubMedCrossRefGoogle Scholar
  443. Scott JW (1984) Genetic source of tomato firmess. In: Proceedings of 4th tomato quality workshop, Miami, FL, USA, 7 Mar 1983, pp 60–67Google Scholar
  444. Scott JW, Gardner RG (2007) Breeding for resistance to fungal pathogens. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2: Tomato. Science, Enfield, NH, pp 421–456Google Scholar
  445. Scott JW, Jones JP (1989) Monogenic resistance in tomato to Fusarium oxysporum f. sp. Lycopersici race 3. Euphytica 40:49–53Google Scholar
  446. Scott JW, Olson SM, Howe TK, Stoffella PJ, Bartz JA, Bryan HH (1995) Equinox’ heat-telerant hybrid tomato. HortScience 30:647–648Google Scholar
  447. Scott JW, Agrama HA, Jones JP (2004) RFLP-based analysis of recombination among resistance genes to Fusarium wilt races 1, 2, and 3 in tomato. J Am Soc Hortic Sci 129:394–400Google Scholar
  448. Seah S, Yaghoobi J, Rossi M, Gleason CA, Williamson VM (2004) The nematode-resistance gene, Mi-1, is associated with an inverted chromosomal segment in susceptible compared to resistant tomato. Theor Appl Genet 108:1635–1642PubMedCrossRefGoogle Scholar
  449. Segal G, Sarfatti M, Schaffer MA, Ori N, Zamir D, Fluhr R (1992) Correlation of genetic and physical structure in the region surrounding the I 2 Fusarium oxysporum locus in tomato. Mol Gen Genet 231:179–185PubMedGoogle Scholar
  450. Seithe A (1962) Die Haararten der Gattung Solanum L. und ihre taxonomische Verwertung. Bot Jahrb Syst 81:261–336Google Scholar
  451. Sela-Buurlage MB, Budai-Hadrian O, Pan Q, Carmel-Goren L, Vunsch R, Zamir D, Fluhr R (2001) Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex loci. Mol Genet Genom 265:1104–1111CrossRefGoogle Scholar
  452. Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA 103:12981–12986PubMedCrossRefGoogle Scholar
  453. Sharma A, Zhang L, Niño-Liu D, Ashrafi H, Foolad MR (2008) A Solanum lycopersicum × Solanum pimpinellifolium linkage map of tomato displaying genomic locations of R-genes, RGAs, and candidate resistance/defense-response ESTs. Int J Plant Genom. doi: 10.1155/2008/926090 Google Scholar
  454. Sherman JD, Stack SM (1995) Two-dimensional spreads of synaptonemal complexes from solanaceous plants. VI. High resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141:683–708PubMedGoogle Scholar
  455. Shirasawa K, Asamizu E, Fukuoka H, Ohyama A, Sato S, Nakamura Y, Tabata S, Sasamoto S, Wada T, Kishida Y, Tsuruoka H, Fujishiro T, Yamada M, Isobe S (2010) An interspecific linkage map of SSR and intronic polymorphism markers in tomato. Theor Appl Genet 121(4):731–739PubMedCrossRefGoogle Scholar
  456. Simons G, Groenendijk J, Wijbrandi J, Reijans M, Groenen J, Diergaarde P, Van der Lee T, Bleeker M, Onstenk J, de Both M, Haring M, Mes J, Cornelissen B, Zabeau M, Vos P (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068PubMedCrossRefGoogle Scholar
  457. Sims WL (1980) History of tomato production for industry around the world. Acta Hortic 100:25–26Google Scholar
  458. Sinesio F, Cammareri M, Moneta E, Navez B, Peparaio M, Causse M, Grandillo S (2010) Sensory quality of fresh French and Dutch market tomatoes: a preference mapping study with Italian consumers. J Food Sci 75:S55–S67PubMedCrossRefGoogle Scholar
  459. Smith PG (1944) Embryo culture of a tomato species hybrid. Proc Am Soc Hortic Sci 44:413–416Google Scholar
  460. Smith SD, Peralta IE (2002) Ecogeographic surveys as tools for analyzing potential reproductive isolating mechanisms: an example using Solanum juglandifolium Dunal, S. ochranthum Dunal, S. lycopersicoides Dunal, and S. sitiens I.M. Johnston. Taxon 51:341–349CrossRefGoogle Scholar
  461. Snyder JC, Guo Z, Thacker R, Goodman JP, Pyrek JS (1993) 2,3-Dihydrofarnesoic acid, a unique terpene from trichomes of Lycopersicon hirsutum, repels spider mites. J Chem Ecol 19:2981–2997CrossRefGoogle Scholar
  462. Soumpourou E, Iakovidis M, Chartrain L, Lyall V, Thomas CM (2007) The Solanum pimpinellifolium Cf-ECP1 and Cf-ECP4 genes for resistance to Cladosporium fulvum are located at the Milky Way locus on the short arm of chromosome 1. Theor Appl Genet 115:1127–1136PubMedCrossRefGoogle Scholar
  463. Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am J Bot 80:676–688CrossRefGoogle Scholar
  464. Spooner DM, van den Berg RG, Rodríguez A, Bamberg J, Hijmans RJ, Lara Cabrera SI (2004) Wild potatoes (Solanum section Petota; Solanaceae) of North and Central America. Syst Bot Monogr 68:1–209CrossRefGoogle Scholar
  465. Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs to other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. Taxon 54:43–61CrossRefGoogle Scholar
  466. Springer NM, Stupar RM (2007) Allelic variation and heterosis in maize: how do two halves make more than a whole? Genome Res 17:264–275PubMedCrossRefGoogle Scholar
  467. Stack SM, Covey PA, Anderson LK, Bedinger PA (2009) Cytogenetic characterization of species hybrids in the tomato clade. Tomato Genet Coop Rep 59:57–61Google Scholar
  468. Städler T, Roselius K, Stephan W (2005) Genealogical footprints of speciation processes in wild tomatoes: demography and evidence for historical gene flow. Evolution 59:1268–1279PubMedGoogle Scholar
  469. Stall RE, Walter JM (1965) Selection and inheritance of resistance in tomato to isolates of race 1 and 2 of the Fusarium wilt organism. Phytopathology 55:1213–1215Google Scholar
  470. Stamova BS, Chetelat RT (2000) Inheritance and genetic mapping of cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theor Appl Genet 101:527–537CrossRefGoogle Scholar
  471. Stamova L, Yordanov M (1990) Lv – as a symbol of the gene controlling resistance to Leveillula taurica. Tomato Genet Coop Rep 40:36Google Scholar
  472. Stevens MA (1972) Relationships between components contributing to quality variation among tomato lines. J Am Soc Hortic Sci 97:70–73Google Scholar
  473. Stevens MA (1986) Inheritance of tomato fruit quality components. In: Janick J (ed) Plant breeding reviews, vol 4. AVI, Westport, CT, USA, pp 273–312Google Scholar
  474. Stevens MA, Rick CM (1986) Genetics and breeding. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, UK, pp 35–109Google Scholar
  475. Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw5 locus for tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456CrossRefGoogle Scholar
  476. Stevens R, Buret M, Duffé F, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and quantitative trait loci affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953PubMedCrossRefGoogle Scholar
  477. Stevens R, Page D, Gouble B, Garchery C, Zamir D, Causse M (2008) Tomato fruit ascorbic acid content is linked with monodehydroascorbate reductase activity and tolerance to chilling stress. Plant Cell Environ 31:1086–1096PubMedCrossRefGoogle Scholar
  478. Stommel JR (2001) USDA 97L63, 97L66 and 97L97: tomato breeding lines with high fruit beta-carotene content. HortScience 36:387–388Google Scholar
  479. Stommel JR, Zhang Y (1998) Molecular markers linked to quantitative trait loci for anthracnose resistance in tomato. HortScience 33:514Google Scholar
  480. Stommel JR, Zhang Y (2001) Inheritance and QTL analysis of anthracnose resistance in the cultivated tomato (Lycopersicon esculentum). Acta Hortic 542:303–310Google Scholar
  481. Stommel JR, Abbott J, Saftner RA, Camp M (2005a) Sensory and objective quality attributes of beta-carotene- and lycopene-rich tomato fruit. J Am Soc Hortic Sci 130:244–251Google Scholar
  482. Stommel JR, Abbott JA, Saftner RA (2005b) USDA 02L1058 and 02L1059: Cherry tomato breeding lines with high fruit beta-carotene content. HortScience 40:1569–1570Google Scholar
  483. Suliman-Pollatschek S, Kashkush K, Shats H, Hillel J, Lavi U (2002) Generation and mapping of AFLP, SSRs and SNPs in Lycopersicon esculentum. Cell Mol Biol Lett 7(2A):583–597Google Scholar
  484. Symon DE (1981) The Solanaceous genera Browallia, Capsicum, Cestrum, Cyphomandra, Hyoscyamus, Lycopersicon, Nierembergia, Physalis, Petunia, Salpichroa, Withania, naturalized in Australia. J Adelaide Bot Gard 3:133–166Google Scholar
  485. Symon DE (1985) The Solanaceae of New Guinea. J Adelaide Bot Gard 8:1–177Google Scholar
  486. Szinay D (2010) The development of FISH tools for genetic, phylogenetic and breeding studies in tomato (Solanum lycopersicum). PhD Thesis, Wagenigen University, Wageningen, NetherlandsGoogle Scholar
  487. Tadmor Y, Fridman E, Gur A, Larkov O, Lastochkin E, Ravid U, Zamir D, Lewinsohn E (2002) Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication. J Agric Food Chem 50(7):2005–2009PubMedCrossRefGoogle Scholar
  488. Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233PubMedCrossRefGoogle Scholar
  489. Tanksley SD (2004) The genetic, developmental and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189PubMedCrossRefGoogle Scholar
  490. Tanksley SD, Bernstzky R (1987) Molecular markers for the nuclear genome of tomato. In: Nevins DJ, Jones RA (eds) Plant biology, vol 4, Tomato biotechnology. Alan R. Liss, New York, NY, USA, pp 37–44Google Scholar
  491. Tanksley SD, Costello W (1991) The size of the L. pennellii chromosome 7 segment containing the I-3 gene in tomato breeding lines as measured by RFLP probing. Rep Tomato Genet Coop 41:60–61Google Scholar
  492. Tanksley SD, Hewitt JD (1988) Use of molecular markers in breeding for soluble solids in tomato – a re-examination. Theor Appl Genet 75:811–823CrossRefGoogle Scholar
  493. Tanksley SD, Loaiza-Figueroa F (1985) Gametophytic self-incompatibility is controlled by a single major locus on chromosome 1 in Lycopersicon peruvianum. Genetics 82:5093–5096Google Scholar
  494. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  495. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203CrossRefGoogle Scholar
  496. Tanksley SD, Rick CM (1980) Isozymic gene linkage map of the tomato: applications in genetics and breeding. Theor Appl Genet 57:161–170CrossRefGoogle Scholar
  497. Tanksley SD, Medina-Filho E, Rick CM (1982) Use of naturally-occurring enzyme variation to detect and map genes controlling quantitative traits in an interspecific backcross of tomato. Heredity 49(1):11–25CrossRefGoogle Scholar
  498. Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Riider MS, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  499. Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224CrossRefGoogle Scholar
  500. Tanksley SD, Bernacchi D, Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D (1997a) Comparing the performance of a pair of processing lines nearly isogenic for the I2 gene conferring resistance to Fusarium oxysporum race 2. Rep Tomato Genet Coop 47:33–35Google Scholar
  501. Tanksley SD, Bernacchi D, Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D (1997b) Comparing the effects of linkage drag in a set of processing tomato lines nearly isogenic for the Mi gene for resistance to root knot nematodes. Rep Tomato Genet Coop 47:35–36Google Scholar
  502. Taylor IB (1986) Biosystematics of the tomato. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, UK, pp 1–34Google Scholar
  503. ten Have A, van Berloo R, Lindhout P, van Kan JAL (2007) Partial stem and leaf resistance against the fungal pathogen Botrytis cinerea in wild relatives of tomato. Eur J Plant Pathol 117:153–166CrossRefGoogle Scholar
  504. Termolino P, Fulton T, Perez O, Eannetta N, Xu Y, Tanksley SD, Grandillo S (2010) Advanced backcross QTL analysis of a Solanum lycopersicum × Solanum chilense cross. In: Proceedings of SOL2010 7th Solanaceae conference, Dundee, Scotland, 5–9 Sept 2010 (in press)Google Scholar
  505. Thomas CM, Jones DA, Parniske M, Harrison K, Balint Kurti PJ, Hatzixanthis K, Jones JDG (1997) Characterization of the tomato Cf-4 gene for resistance to Cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9:2209–2224PubMedCrossRefGoogle Scholar
  506. Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Nigel G (1996a) Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii7996. Mol Plant Microbe Interact 9(9):826–836CrossRefGoogle Scholar
  507. Thoquet P, Olivier J, Sperisen C, Rogowsky P, Priror P, Anaïs G, Mangin B, Bazin B, Nazer N, Nigel G (1996b) Polygenic resistence of tomato plants to bacterial wilt in the West Indies. Mol Plant Microbe Interact 9(9):837–842CrossRefGoogle Scholar
  508. Tieman D, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57(4):887–896PubMedCrossRefGoogle Scholar
  509. Tomes ML, Quackenbush FW, McQuistan M (1954) Modification and dominance of the gene governing formation of high concentrations of beta-carotene in the tomato. Genetics 39:810–817PubMedGoogle Scholar
  510. Tripodi P, Frusciante L, Tanksley SD, Grandillo S (2006) Updates on the development of a whole genome S. habrochaites (acc. LA1777) IL population. In: Proceedings of VI international Solanaceae conference on genomics meets biodiversity, Madison, WI, USA, 23–27 July 2006, p 403Google Scholar
  511. Tripodi P, Maurer S, Di Dato F, Al Seekh S, Frusciante L, Van Haaren MJJ, Mohammad A, Tanksley SD, Zamir D, Gebhardt C, Grandillo S (2009) Linking a set of tomato exotic libraries and a potato mapping population with a framework of conserved ortholog set II (COSII) markers. In: Proceedings of plant biology 2009, Honolulu, HI, USA, 18–22 July 2009, pp 194–195Google Scholar
  512. Tripodi P, Brog M, Di Dato F, Zamir D, Grandillo S (2010) QTL analysis in backcross inbred lines of Solanum neorickii (LA2133). In: Proceedings of SOL2010 7th Solanaceae conference, Dundee, Scotland, 5–9 Sept 2010 (in press)Google Scholar
  513. Truco MJ, Randall LB, Bloom AJ, St.Clair DA (2000) Detection of QTLs associated with shoot wilting and root ammonium uptake under chilling temperatures in an interspecific backcross population from Lycopersicon esculentum × L. hirsutum. Theor Appl Genet 101:1082–1092CrossRefGoogle Scholar
  514. Umaerus V, Umaerus M (1994) Inheritance of resistance to late blight. In: Bradshaw JE, Mackay GR (eds) Potato genetics. CABI, Wallingford, UK, pp 365–401Google Scholar
  515. Vakalounakis DJ, Laterrot H, Moretti A, Ligoxigasis EK, Smardas K (1997) Linkage between Frl (Fusarium oxysporum f.sp. radicis-lycopersici resistance) and Tm-2 (tobacco mosaic virus resistance-2) loci in tomato (Lycopersicon esculentum). Ann Appl Biol 130:319–323CrossRefGoogle Scholar
  516. Vallejos CE, Tanksley SD (1983) Segregation of isozyme markers and cold tolerance in an interspecific backcross of tomato. Theor Appl Genet 66:241–247CrossRefGoogle Scholar
  517. Van der Beek JG, Verkerk R, Zabel P, Lindhout P (1992) Mapping strategy for resistance genes in tomato based on RFLPs between cultivars: Cf9 (resistance to Cladosporium fulvum) on chromosome 1. Theor Appl Genet 84:106–112CrossRefGoogle Scholar
  518. Van der Beek JG, Pet G, Lindhout P (1994) Resistance to powdery mildew (Oidium lycopersicum) in Lycopersicon hirsutum is controlled by an incompletely-dominant gene Ol-1 on chromosome 6. Theor Appl Genet 89:467–473CrossRefGoogle Scholar
  519. Van der Biezen EA, Overduin B, Nijkamp HJJ, Hille J (1994) Integrated genetic map of tomato chromosome 3. Tomato Genet Coop Rep 44:8–10Google Scholar
  520. Van der Biezen EA, Glagotskaya T, Overduin B, Nijkamp HJJ, Hille J (1995) Inheritance and genetic mapping of resistance to Alternaria alternata f. sp. lycopersici in Lycopersicon pennellii. Mol Gen Genet 247:453–461PubMedCrossRefGoogle Scholar
  521. Van der Hoeven RS, Monforte AJ, Breeden D, Tanksley SD, Steffens JC (2000) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell 12:2283–2294CrossRefGoogle Scholar
  522. Van Der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization, and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456PubMedCrossRefGoogle Scholar
  523. Van der Knaap E, Tanksley SD (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet 103:353–358CrossRefGoogle Scholar
  524. Van der Knaap E, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theor Appl Genet 107:139–147PubMedGoogle Scholar
  525. Van der Knaap E, Lippman ZB, Tanksley SD (2002) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104:241–247CrossRefGoogle Scholar
  526. Van der Knaap E, Sanyal A, Jackson SA, Tanksley SD (2004) High-resolution fine mapping and fluorescence in situ hybridization analysis of sun, a locus controlling tomato fruit shape, reveals a region of the tomato genome prone to DNA rearrangements. Genetics 168:2127–2140PubMedCrossRefGoogle Scholar
  527. Van Deynze A, van der Knaap E, Francis D (2006) Development and application of an informative set of anchored markers for tomato breeding. In: Plant animal genome XIV conference, San Diego, CA, USA, P 188Google Scholar
  528. Van Heusden AW, Koornneef M, Voorrips RE, Brüggemann W, Pet G, Vrielink-van Ginkel R, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor Appl Genet 99:1068–1074CrossRefGoogle Scholar
  529. Van Ooijen JW, Sandbrink JM, Vrielink M, Verkerk R, Zabel P, Lindhout P (1994) An RFLP linkage map of Lycopersicon peruvianum. Theor Appl Genet 89:1007–1013CrossRefGoogle Scholar
  530. Van Tuinen A, Cordonnier-Pratt MM, Pratt LH, Verkerk R, Zabel P, Koornneef M (1997) The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor Appl Genet 94:115–122PubMedCrossRefGoogle Scholar
  531. VanWordragen MF, Weide RL, Coppoolse E, Koornneef M, Zabel P (1996) Tomato chromosome 6: a high resolution map of the long arm and construction of a composite integrated marker-order map. Theor Appl Genet 92:1065–1072CrossRefGoogle Scholar
  532. Veremis JC, Roberts PA (1996a) Relationships between Meloidogyne incognita resistance genes in Lycopersicon peruvianum differentiated by heat sensitivity and nematode virulence. Theor Appl Genet 93:950–959CrossRefGoogle Scholar
  533. Veremis JC, Roberts PA (1996b) Differentiation of Meloidogyne incognita and M. arenaria novel resistance phenotypes in Lycopersicon peruvianum and derived bridge lines. Theor Appl Genet 93:960–967CrossRefGoogle Scholar
  534. Veremis JC, Roberts PA (2000) Diversity of heat-stable genotype specific resistance to Meloidogyne in Marañon races of Lycopersicon peruvianum complex. Euphytica 111:9–16CrossRefGoogle Scholar
  535. Veremis JC, van Heusden AW, Roberts PA (1999) Mapping a novel heat-stable resistance to Meloidogyne in Lycopersicon peruvianum. Theor Appl Genet 98:274–280CrossRefGoogle Scholar
  536. Villalta I, Reina-Sánchez A, Cuartero J, Carbonell EA, Asins MJ (2005) Comparative microsatellite linkage analysis and genetic structure of two populations of F6 lines derived from Lycopersicon pimpinellifolium and L. cheesmanii. Theor Appl Genet 110:881–894PubMedCrossRefGoogle Scholar
  537. Villalta I, Bernet GP, Carbonell EA, Asins MJ (2007) Comparative QTL analysis of salinity tolerance in terms of fruit yield using two Solanum populations of F7 lines. Theor Appl Genet 114:1001–1017PubMedCrossRefGoogle Scholar
  538. Villalta I, Reina-Sánchez A, Bolarín MC, Cuartero J, Belver A, Venema K, Carbonell EA, Asins MJ (2008) Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in tomato. Theor Appl Genet 116:869–880PubMedCrossRefGoogle Scholar
  539. Villand J, Skroch PW, Lai T, Hanson P, Kuo CG, Nienhuis J (1998) Genetic variation among tomato accessions from primary and secondary centers of diversity. Crop Sci 38:1339–1347CrossRefGoogle Scholar
  540. Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens-Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369PubMedCrossRefGoogle Scholar
  541. Walter JM (1967) Heredity resistance to disease in tomato. Annu Rev 5:131–160Google Scholar
  542. Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD (2006) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172:2529–2540PubMedCrossRefGoogle Scholar
  543. Warnock SJ (1988) A review of taxonomy and phylogeny of the genus Lycopersicon. Hortic Sci 23:669–673Google Scholar
  544. Wastie RL (1991) Breeding for resistance. In: Ingram DS, Williams PH (eds) Phytophthora infestans, the cause of late blight of potato. Advances in plant pathology, vol 7. Academic, London, UK, pp 193–224Google Scholar
  545. Weese T, Bohs L (2007) A three-gene phylogeny of the genus Solanum (Solanaceae). Syst Bot 33:445–463CrossRefGoogle Scholar
  546. Weide R, van Wordragen MF, Lankhorst RK, Verkerk R, Hanhart C, Liharska T, Pap E, Stam P, Zabel P, Koorneef M (1993) Integration of the classical and molecular linkage maps of tomato chromosome 6. Genetics 135:1175–1186PubMedGoogle Scholar
  547. Weller JI, Soller M, Brody T (1988) Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum × Lycopersicon pimpinellifolium) by means of genetic markers. Genetics 118:329–339PubMedGoogle Scholar
  548. Whalen MD (1979) Taxonomy of Solanum section Androceras. Gentes Herb 11:359–426Google Scholar
  549. Whalen MD (1984) Conspectus of species groups in Solanum subgenus Leptostemonum. Gentes Herb 12:179–282Google Scholar
  550. Wheeler D, Church D, Edgar R, Federhen S, Helmberg W, Madden T, Pontius J, Schuler G, Schriml L, Sequeira E, Suzek T, Tatusova T, Wagner L (2004) Database resources of the National Center for Biotechnology Information: update. Nucleic Acids Res 32:D35–D40PubMedCrossRefGoogle Scholar
  551. Williams CE, St. Clair DA (1993) Phenetic relationships and levels of variability detected by restriction fragment length polymorphism and random amplified polymorphic DNA analysis of cultivated and wild accessions of Lycopersicon esculentum. Genome 36:619–630PubMedCrossRefGoogle Scholar
  552. Wing RA, Zhang HB, Tanksley SD (1994) Map-based cloning in crop plants. Tomato as a model system: I. Genetic and physical mapping of jointless. Mol Gen Genet 242:681–688PubMedCrossRefGoogle Scholar
  553. Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the euasterid plant clade. Genetics 174:1407–1420PubMedCrossRefGoogle Scholar
  554. Xiao H, Jiang N, Schaffner E, Stockinger EJ, Van der Knaap E (2008) A retrotransposon- mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530PubMedCrossRefGoogle Scholar
  555. Xu X, Martin B, Comstock JP, Vision TJ, Tauer CG, Zhao B, Pausch RC, Knapp S (2008) Fine mapping a QTL for carbon isotope composition in tomato. Theor Appl Genet 117:221–233PubMedCrossRefGoogle Scholar
  556. Yaghoobi J, Kaloshian I, Wen Y, Williamson VM (1995) Mapping a new nematode resistance locus in Lycopersicon peruvianum. Theor Appl Genet 91:457–464CrossRefGoogle Scholar
  557. Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D (2004) Discovery of singly nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14(1):21–34CrossRefGoogle Scholar
  558. Yano K, Watanabe M, Yamamoto N, Tsugane T, Aoki K, Sakurai N, Shibata D (2006) MiBASE: a database of a miniature tomato cultivar Micro-Tom. Plant Biotechnol 23:195–198CrossRefGoogle Scholar
  559. Yates HE, Frary A, Doganlar S, Frampton A, Eannetta NT, Uhlig J, Tanksley SD (2004) Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild tomato species. Euphytica 135:283–296CrossRefGoogle Scholar
  560. Yelle S, Hewitt JD, Robinson NL, Damon S, Bennett AB (1988) Sink metabolism in tomato fruit III. Analysis of carbohydrate assimilation in a wild species. Plant Physiol 87:737–740PubMedCrossRefGoogle Scholar
  561. Yelle S, Chetelat RT, Dorais M, DeVerna JW, Bennett AB (1991) Sink metabolism in tomato fruit IV Genetic and biochemical analysis of sucrose accumulation. Plant Physiol 95:1026–1035PubMedCrossRefGoogle Scholar
  562. Yen HC, Shelton BA, Howard LR, Lee S, Vrebalov J, Giovannoni JJ (1997) The tomato high-pigment (hp) locus maps to chromosome 2 and influences plastome copy number and fruit quality. Theor Appl Genet 95:1069–1079CrossRefGoogle Scholar
  563. Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2a gene in tomato. Genetics 120(2):579–585PubMedGoogle Scholar
  564. Yu AT (1972) The genetics and physiology of water usage in Solanum pennellii Corr. and its hybrids with Lycopersicon esculentum Mill. PhD Dissertation, University of California, Davis, CA, USAGoogle Scholar
  565. Yu ZH, Wang JF, Stall RE, Vallejos CE (1995) Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) dye. Genetics 141(2):675–682PubMedGoogle Scholar
  566. Yuan YN, Haanstra J, Lindhout P, Bonnema G (2002) The Cladopsorium fulvum resistance gene Cf-ECP3 is part of the Orion cluster on the short arm of chromosome 1. Mol Breed 10:45–50CrossRefGoogle Scholar
  567. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989PubMedCrossRefGoogle Scholar
  568. Zamir D, Eshed Y (1998a) Case history in germplasm introgression: tomato genetics and breeding using nearly isogenic introgression lines derived from wild species. In: Paterson A (ed) Molecular dissection of complex traits. CRC, Boca Raton, FL, USA, pp 207–217Google Scholar
  569. Zamir D, Eshed Y (1998b) Tomato genetics and breeding using nearly isogenic introgression lines derived from wild species. In: Paterson AH (ed) Molecular dissection of complex traits. CRC, Boca Raton, FL, USA, pp 207–217Google Scholar
  570. Zamir D, Tal M (1987) Genetic analysis of sodium, potassium and chloride ion content in lycopersicon. Euphytica 36:187–191CrossRefGoogle Scholar
  571. Zamir D, Tanksley SD, Jones RA (1982) Haploid selection for low temperature tolerance of tomato pollen. Genetics 101:129–137PubMedGoogle Scholar
  572. Zamir D, Ben-David T, Rudich J, Juvik J (1984) Frecuency distributions and linkage relationships of 2-tridecanone in interspecific segregrating generations in tomato. Euphytica 33(2):481–482CrossRefGoogle Scholar
  573. Zamir D, Ekstein-Michelson I, Zakay I, Navot N, Zaidan N, Sarfatti M, Eshed Y, Harel E, Pleban T, van Oss H, Kedar N, Rabinowitch HD, Czosneck H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–146CrossRefGoogle Scholar
  574. Zhang Y, Stommel JR (2000) RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (MoB), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 100:368–375CrossRefGoogle Scholar
  575. Zhang Y, Stommel JR (2001) Development of SCAR and CAPS markers linked to the Beta gene in tomato. Crop Sci 41:1602–1608CrossRefGoogle Scholar
  576. Zhang HB, Martin GB, Tanksley SD, Wing RA (1994) Map-based cloning in crop plants: tomato as a model system U Isolation and characterization of a set of overlapping yeast artificial chromosomes encompassing the jointless locus. Mol Gen Genet 244:613–621PubMedCrossRefGoogle Scholar
  577. Zhang HB, Budiman MA, Wing RA (2000) Genetic mapping of jointless-2 to tomato chromosome 12 using RFLP and RAPD markers. Theor Appl Genet 100:1183–1189CrossRefGoogle Scholar
  578. Zhang LP, Khan A, Niño-Liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum × Lycopersicon hirsutum cross. Genome 45:133–146PubMedCrossRefGoogle Scholar
  579. Zhang LP, Lin GY, Foolad MR (2003a) QTL comparison of salt tolerance during seed germination and vegetative growth in a Lycopersicon esculentum × L. pimpinellifolium RIL population. Acta Hortic 618:59–67Google Scholar
  580. Zhang LP, Lin GY, Niño-Liu D, Foolad MR (2003b) Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19CrossRefGoogle Scholar
  581. Zhang X, Thacker RR, Snyder JC (2008) Occurrence of 2,3-dihydrofarnesoic acid, a spidermite repellent, in trichome secretions of Lycopersicon esculentum × L. hirsutum hybrids. Euphytica 162:1–9CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Silvana Grandillo
    • 1
    Email author
  • Roger Chetelat
    • 2
  • Sandra Knapp
    • 3
  • David Spooner
    • 4
  • Iris Peralta
    • 5
    • 6
  • Maria Cammareri
    • 7
  • Olga Perez
    • 8
  • Pasquale Termolino
    • 7
  • Pasquale Tripodi
    • 7
  • Maria Luisa Chiusano
    • 9
  • Maria Raffaella Ercolano
    • 9
  • Luigi Frusciante
    • 9
  • Luigi Monti
    • 9
  • Domenico Pignone
    • 10
  1. 1.CNR-IGV, Institute of Plant Genetics, Division of PorticiNational Research CouncilNaplesItaly
  2. 2.C. M. Rick Tomato Genetics Resource Center, Department of Plant SciencesUniversity of CaliforniaDavisUSA
  3. 3.Department of BotanyThe Natural History MuseumLondonUK
  4. 4.Vegetable Crops Research Unit, USDA-ARS, Department of HorticultureUniversity of WisconsinMadisonUSA
  5. 5.Department of AgronomyNational University of CuyoLujánArgentina
  6. 6.IADIZA CCT Mendoza CONICETMendozaArgentina
  7. 7.CNR – Institute of Plant Genetics, Res. Div. PorticiNational Research CouncilPorticiItaly
  8. 8.Scuola Superiore Sant’Anna, International Doctoral Programme on Agrobiodiversity – Plant Genetic ResourcesENEA-Cr. CasacciaRomeItaly
  9. 9.Department of Soil, Plant, Environmental and Animal Production SciencesUniversity of Naples Federico IIPorticiItaly
  10. 10.CNR – Institute of Plant GeneticsNational Research CouncilBariItaly

Personalised recommendations