Advertisement

Abstract

The genus Solanum has a near-cosmopolitan distribution and furnishes a wide range of relatives of some of the world’s most important crops. The potato is the fourth most important crop globally. Other crops in the genus include the tomato, the subject of another chapter in this volume, eggplant or aubergine, the Ethiopian eggplant, and a number of other minor berry and leafy vegetable species. These species have origins in both the New and Old Worlds. Both climate change and land-use changes are threatening some of the wild relatives of these crops and estimates have been made for the relatives of potato in the Andes, which suggest that approximately 10% of species may go extinct by 2055 if they cannot migrate at a sufficient rate. However, wild potatoes were early subjects for plant collectors, and they are now well-represented in gene banks globally unlike the relatives of Solanum crops other than potato and tomato. Particularly in potato, these wild relatives have been used extensively in breeding through sexual means and also used to determine which species gave rise to the crop and, therefore, where this domestication took place. More direct routes to access and transfer pest and disease resistance in this crop are underway. The genome of the potato has now been fully sequenced, and additional effort in its wild relatives may now be expected. There is a great deal of potential in the genus particularly for the identification of bioactive compounds for novel medicines.

Keywords

Amplify Fragment Length Polymorphism Wild Species Late Blight Wild Relative Gene Bank 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ames M, Spooner DM (2008) DNA from herbarium specimens settles a controversy about origins of the European potato. Am J Bot 95:252–257PubMedCrossRefGoogle Scholar
  2. Amir M, Kumar S (2004) Possible industrial applications of genus Solanum in the twenty-first century – a review. J Sci Ind Res 63:116–124Google Scholar
  3. Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436CrossRefGoogle Scholar
  4. Anonymous (2007) Data sheet on quarantine pests: Solanum elaeagnifolium. OEPP/EPPO Bull 37:236–245Google Scholar
  5. Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. J Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  6. Behera TK, Sharma P, Singh BK, Kumar G, Kumar R, Mohapatra T, Singh NK (2006) Assessment of genetic diversity and species relationships in eggplant (Solanum melongena L.) using STMS markers. Sci Hortic 107:352–357CrossRefGoogle Scholar
  7. Black W (1943) Inheritance of resistance to two strains of blight (Phytophthora infestans de Bary) in potatoes. Trans R Soc Edinb 61:137–147Google Scholar
  8. Bohs L (1995) Transfer of Cyphomandra (Solanaceae) and its species to Solanum. Taxon 44:583–587CrossRefGoogle Scholar
  9. Bradshaw JE, Dale MFB, Phillips MS (1995) Breeding potatoes at SCRI for resistance to potato cyst nematodes. SCRI Annu Rep 1995:30–34Google Scholar
  10. Bradshaw JE, Bryan GJ, Ramsay G (2005) Genetic resources (including wild and cultivated Solanum species) and progress in their utilisation in potato breeding. Pot Res 49:49–65. doi: 10.1007/s11540-006-9002-5 CrossRefGoogle Scholar
  11. Bradshaw JE, Hackett CA, Pande B, Waugh R, Bryan GJ (2008) QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp tuberosum). Theor Appl Genet 116:193–211PubMedCrossRefGoogle Scholar
  12. Bukasov SM (1966) Die Kulturkartoffel und ihre wildwachsenden Vorfahren. Z Pflanzenzuecht 55:139–164Google Scholar
  13. Cappadocia M, Cheng DSK, Ludlum-Simonette R (1986) Self-compatibility in doubled haploids and their F1 hybrids, regenerated via anther culture in self-incompatible Solanum chacoense Bitt. Theor Appl Genet 72:66–69CrossRefGoogle Scholar
  14. Cham BE (2007) Solasodine rhamnosyl glycosides specifically bind cancer cell receptors and induce apoptosis and necrosis. Treatment for skin cancer and hope for internal cancers. Res J Biol Sci 2:503–514Google Scholar
  15. Cham BE, Meares MM (1987) Glycoalkaloids from Solanum sodomaeum L. are effective in the treatment of skin cancers in man. Cancer Lett 36:111–118PubMedCrossRefGoogle Scholar
  16. Cham BE, Gilliver M, Wilson L (1987) Antitumour effects of glycoalkaloids isolated from Solanum sodomaeum L. Planta Med 53:34–36PubMedCrossRefGoogle Scholar
  17. Chiarini F, Bernardello G (2006) Karyotype studies in South American species of Solanum subgen. Leptostemonum (Solanaceae). Plant Biol 8:486–493PubMedCrossRefGoogle Scholar
  18. Clulow SA, Rousselle-Bourgeois F (1997) Widespread introgression of Solanum phureja DNA in potato (S. tuberosum) dihaploids. Plant Breed 116:347–351CrossRefGoogle Scholar
  19. Coca Morante M, Ticona VH, Castillo Plata W, Tordoya IT (2007) Distribution of wild potato species in the north of the Department of La Paz, Bolivia. Spn J Agric Res 5:326–332Google Scholar
  20. Colon LT, Budding DJ (1988) Resistance to late blight (Phytophthora infestans) in ten wild Solanum species. Euphytica 5:77–86Google Scholar
  21. Cooper JP, Howard HW (1952) The chromosome numbers of seedlings from the cross Solanum demissum × tuberosum backcrossed by S. tuberosum. J Genet 50:511–521CrossRefGoogle Scholar
  22. Correll DS (1962) The potato and its wild relatives. Section Tuberarium of the genus Solanum. Texas Research Foundation, Renner, TX, USAGoogle Scholar
  23. Danan S, Chauvin JE, Caromel B, Moal JD, Pelle R, Lefebvre V (2009) Major-effect QTLs for stem and foliage resistance to late blight in the wild potato relatives Solanum sparsipilum and S. spegazzinii are mapped to chromosome X. Theor Appl Genet 119:705–719PubMedCrossRefGoogle Scholar
  24. Daunay M-C, Janick J (2007) History and iconography of eggplant. Chron Hortic 47:16–22Google Scholar
  25. Debener T, Salamini F, Gebhardt C (1990) Phylogeny of wild and cultivated Solanum species based on nuclear restriction fragment length polymorphism. Theor Appl Genet 79:360–368CrossRefGoogle Scholar
  26. Dodds KN (1962) Classification of cultivated potatoes. In: Correll DS (ed) The potato and its wild relatives. Contributions from Texas Research Foundation. Bot Stud 4:517–539Google Scholar
  27. Drenth A, Tas ICQ, Govers F (1994) DNA fingerprinting uncovers a new sexually reproducing population of Phytophthora infestans in the Netherlands. Eur J Plant Pathol 100:97–107CrossRefGoogle Scholar
  28. FAOSTAT (2008) http://faostat.fao.org
  29. Foroughi-Wehr B, Wilson HM, Mix G, Gaul H (1977) Monohaploid plants from anthers of a dihaploid genotype of Solanum tuberosum L. Euphytica 26:361–367CrossRefGoogle Scholar
  30. García CG, Matesevach M, Barboza G (2008) Features related to anther opening in Solanum species (Solanaceae). Bot J Linn Soc 158:344–354CrossRefGoogle Scholar
  31. Gebhardt C, Ballvora A, Walkemeier B, Oberhagemann P, Schuler K (2004) Assessing genetic potential in germplasm collections of crop plants by marker-trait association: a case study for potatoes with quantitative variation of resistance to late blight and maturity type. Mol Breed 13:93–102CrossRefGoogle Scholar
  32. Glover BJ, Bunnewell S, Martin C (2004) Convergent evolution within the genus Solanum: the specialised anther cone develops through alternative pathways. Gene 331:1–7PubMedCrossRefGoogle Scholar
  33. Hackett CA, Pande B, Bryan GJ (2003) Constructing linkage maps in autotetraploid species using simulated annealing. Theor Appl Genet 106:1107–1115PubMedGoogle Scholar
  34. Hanson J (1985) Procedures for handling seeds in genebanks. IBPGR Practical Manuals for Genebanks no 1. IBPGR Secretariat, Rome, ItalyGoogle Scholar
  35. Haston E, Richardson JE, Stevens PF, Chase MW, Harris DJ (2007) A linear sequence of angiosperm phylogeny group II families. Taxon 56:7–12Google Scholar
  36. Hawkes JG (1958) Significance of wild species and primitive forms for potato breeding. Euphytica 7:257–270Google Scholar
  37. Hawkes JG (1990) The potato: evolution, biodiversity and genetic resources. Belhaven, London, UKGoogle Scholar
  38. Hawkes JG (2004) Hunting the wild potato in the South American Andes. Memories of the British Empire potato collecting expedition to South America 1938–1939. Botanical and Experimental Garden University of Nijmegen, Nijmegen, NetherlandsGoogle Scholar
  39. Hein I, Squires J, Birch P, Bryan GJ (2007) Screening wild potato accessions for resistance to the virulent allele of the Phytophthora infestans effector Avr3a. In: Proceedings of 13th international congress on molecular plant-microbe interactactions, Sorrento, Italy, p 259Google Scholar
  40. Helgeson JP, Pohlman JD, Austin S, Haberlach JT, Wielgus SM, Ronis D, Zambolim L, Tooley P, McGrath JM, James RV, Stevenson WR (1998) Somatic hybrids between Solanum bulbocastanum and potato: a new source of resistance to late blight. Theor Appl Genet 96:738–742CrossRefGoogle Scholar
  41. Hermsen JGT, Ramanna MS (1973) Double-bridge hybrids of Solanum bulbocastanum and cultivars of Solanum tuberosum. Euphytica 22:457–466CrossRefGoogle Scholar
  42. Hermsen JGT, Verdeniu J (1973) Selection from Solanum tuberosum Group Phureja of genotypes combining high-frequency haploid induction with homozygosity for embryo-spot. Euphytica 22:244–259CrossRefGoogle Scholar
  43. Hijmans RJ (2001) Global distribution of the potato crop. Am J Pot Res 78:403–412CrossRefGoogle Scholar
  44. Hosaka K (2003) T-type chloroplast DNA in Solanum tuberosum L. ssp tuberosum was conferred from some populations of S. tarijense Hawkes. Am J Pot Res 80:21–32CrossRefGoogle Scholar
  45. Hosaka K (2004) Evolutionary pathway of T-type chloroplast DNA in potato. Am J Pot Res 81:153–158CrossRefGoogle Scholar
  46. Hosaka K, Hanneman RE Jr (1998) Genetics of self-compatibility in a self-incompatible wild diploid potato species Solanum chacoense. I. Detection of an S locus inhibitor (Sli) gene. Euphytica 99:191–197CrossRefGoogle Scholar
  47. Huamán Z, Spooner DM (2002) Reclassification of landrace populations of cultivated potatoes (Solanum sect. Petota). Am J Bot 89:947–965PubMedCrossRefGoogle Scholar
  48. Huamán Z, Hoekstra R, Bamaberg JB (2000) The inter-genebank potato database and the dimensions of available wild potato germplasm. Am J Pot Res 77:353–362CrossRefGoogle Scholar
  49. Hunziker AT (1979) South American Solanaceae. In: Hawkes JG, Lester RN, Skelding AD (eds) The biology and taxonomy of the Solanaceae, vol 7. Academic, London, UK, pp 49–85Google Scholar
  50. Ignacimuthu S, Ayyanar M, Sankara Sivaraman K (2006) Ethnobotanical investigations among tribes in Madurai District of Tamil Nadu (India). J Ethnobiol Ethnomed 2:25. doi: 10.1186/1746-4269-2-25 PubMedCrossRefGoogle Scholar
  51. IUCN (2009) IUCN red list of threatened species. Version 2009.1. http://www.iucnredlist.org. Accessed 01 Oct 2009
  52. Jarvis A, Lane A, Hijmans RJ (2008) The effect of climate change on crop wild relatives. Agric Ecosyst Environ 126:13–23CrossRefGoogle Scholar
  53. Jenkins JA (1948) The origin of the cultivated tomato. Econ Bot 2:379–392CrossRefGoogle Scholar
  54. Johns T, Huamán Z, Ochoa C, Schmiediche P (1987) Relationships among wild, weed, and cultivated potatoes in the Solanum × ajanhuiri complex. Syst Bot 12:541–552CrossRefGoogle Scholar
  55. Kashyap V, Vinod Kumar S, Collonnier C, Fusari F, Haicour R, Rotino G, Sihachakr D, Rajam MV (2003) Biotechnology of eggplant. Sci Hortic 97:1–25CrossRefGoogle Scholar
  56. Kirkman MA (2007) Global markets for processed potato products. In: Vreugdenhil D (ed) Potato biology and biotechnology: advances and perspectives. Elsevier, Oxford, UK, pp 27–44CrossRefGoogle Scholar
  57. Knapp S (2002) Assessing patterns of plant endemism in Neotropical uplands. Bot Rev 68:22–37CrossRefGoogle Scholar
  58. Koduru S, Grierson DS, Afolayan AJ (2007) Ethnobotanical information of medicinal plants used for treatment of cancer in the Eastern Cape Province, South Africa. Curr Sci 92:906–908Google Scholar
  59. Lester RN, Niakan L (1986) Origin and domestication of the scarlet eggplant Solanum aethiopicum from Solanum anguivi in Africa. In: D’Arcy WG (ed) Solanaceae: biology and systematics. 2nd International symposium, St. Louis, Missouri, Columbia University Press, New York, USA, pp 433–456Google Scholar
  60. Lozoya X, Navarroa V, García M, Zurita M (1992) Solanum chrysotrichum (Schldl.) a plant used in Mexico for the treatment of skin mycosis. J Ethnopharmacol 36:127–132. doi: 10.1016/0378-8741(92)90011-F Google Scholar
  61. Luo ZW, Hackett CA, Bradshaw JE, McNicol JW, Milbourne D (2001) Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics 157:1369–1385PubMedGoogle Scholar
  62. Mahabub Nawaz AHMD, Hossain M, Karim M, Khan M, Jahan R, Rahmatullah M (2009) An ethnobotanical survey of Jessore District in Khulna Division, Bangladesh. Am-Euras J Sustain Agric 3:195–201Google Scholar
  63. Meyer S, Nagel A, Gebhardt C (2005) PoMaMo – a comprehensive database for potato genome data. Nucleic Acids Res 33:D666–D670PubMedCrossRefGoogle Scholar
  64. Montarry J, Andrivon D, Glais I, Corbiere R, Mialdea G, Delmotte F (2010) Microsatellite markers reveal two admixed genetic groups and an ongoing displacement within the French population of the invasive plant pathogen Phytophthora infestans. Mol Ecol 19:1965–1977PubMedCrossRefGoogle Scholar
  65. N'guessan K, Tiébré M-S, Aké-Assi E, Zirihi GN (2009) Ethnobotanical study of plants used to treat arterial hypertension, in traditional medicine, by Abbey and Krobou populations of Agboville (Côte-d’Ivoire). Eur J Sci Res 35:85–98Google Scholar
  66. Peloquin SJ, Yerk GL, Werner JE, Darmo E (1989) Potato breeding with haploids and 2n gametes. Genome 31:1000–1004CrossRefGoogle Scholar
  67. Peralta IE, Spooner DM (2007) History, origin and early cultivation of tomato (Solanaceae). In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2. Science, Enfield, USA, pp 1–27Google Scholar
  68. Phumichai C, Mori M, Kobayashi A, Kamijima O, Hosaka K (2005) Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sli gene. Genome 48:977–984. doi: 10.1139/G05-066 PubMedCrossRefGoogle Scholar
  69. Prakash A (2008) Global potato economy. FAO International Year of the Potato factsheet. http://www.potato2008.org/en/potato/economy.html. Accessed 26 Oct 2009
  70. Prohens J, Anderson GJ, Herraiz FJ, Bernardello G, Santos-Guerra A, Crawford D, Nuez F (2007) Genetic diversity and conservation of two endangered eggplant relatives (Solanum vespertilio Aiton and Solanum lidii Sunding) endemic to the Canary Islands. Genet Resour Crop Evol 54:451–464CrossRefGoogle Scholar
  71. Rahman MA, Rashid MA, Hossain MM, Salam MA, Masum ASMH (2002) Grafting compatibility of cultivated eggplant varieties with wild Solanum species. Pak J Biol Sci 5:755–757. doi: 10.3923/pjbs.2002.755.757 CrossRefGoogle Scholar
  72. Ramsay G, Stewart H, de Jong WS, Bradshaw JE, Mackay GR (1999) Introgresssion of late blight resistance into S. tuberosum. In: Scarascia Mugnozza GT, Porceddu E, Pagnotta MA (eds) Genetics and breeding for crop quality and resistance. Proceedings of XV EUCARPIA Congress, Viterbo, ItalyGoogle Scholar
  73. Ritter E, Ruiz I, de Galarreta J, Hernandez M, Plata G, Barandalla L, Lopez R, Sanchez I, Gabriel J (2009) Utilization of SSR and cDNA markers for screening known QTLs for late blight (Phytophthora infestans) resistance in potato. Euphytica 170:77–86CrossRefGoogle Scholar
  74. Ross H, Langton FA (1974) Origin of unreduced embryo sacs in diploid potatoes. Nature 247:378–379. doi: 10.1038/247378a0 CrossRefGoogle Scholar
  75. Salaman RN (1931) Récent progrès dans la création de varietés de pommes de terre résistant au Mildiou ‘Phytophthora infestans’. In: 2nd Congr Int Pathol Comparée, Paris, CR et Comm, pp 435–437Google Scholar
  76. Samitsu Y, Hosaka K (2002) Molecular marker analysis of 24-and 25-chromosome plants obtained from Solanum tuberosum L. subsp andigena (2n = 4x = 48) pollinated with a Solanum phureja haploid inducer. Genome 45:577–583PubMedCrossRefGoogle Scholar
  77. Schäfer-Menuhr A, Müller E, Mix-Wagner G (1996) Cryopreservation: an alternative for the long-term storage of old potato varieties. Potato Res 39:507–513CrossRefGoogle Scholar
  78. Sękara A, Cebula S, Kunicki E (2007) Cultivated eggplants – origin, breeding objectives and genetic resources, a review. Folia Hortic 19:97–114Google Scholar
  79. Simko I (2004) One potato, two potato: haplotype association mapping in autotetraploids. Trends Plant Sci 9:441–448PubMedCrossRefGoogle Scholar
  80. Simko I, Haynes KG, Jones RW (2006) Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics 173:2237–2245PubMedCrossRefGoogle Scholar
  81. Smith SD, Knapp S (2002) The natural history of reproduction in Solanum and Lycianthes (Solanaceae) in a subtropical moist forest. Bull Nat Hist Mus Bot 32:125–136. doi: 10.1017/S0968044602000051 Google Scholar
  82. Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Acad Sci USA 100:9128–9133PubMedCrossRefGoogle Scholar
  83. Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci USA 102:14694–14699. doi: 10.1073/pnas.0507400102 PubMedCrossRefGoogle Scholar
  84. Straadt IK, Rasmussen O (2003) AFLP analysis of Solanum phureja DNA introgressed into potato dihaploids. Plant Breed 122:352–356CrossRefGoogle Scholar
  85. Sukhotu T, Kamijima O, Hosaka K (2006) Chloroplast DNA variation in the most primitive cultivated diploid potato species Solanum stenotomum Juz. et Buk. and its putative wild ancestral species using high-resolution markers. Genet Resour Crop Evol 53:53–63CrossRefGoogle Scholar
  86. Uijtewaal BA, Huigen DJ, Hermsen JGT (1987) Production of potato monohaploids (2n = x = 12) through prickle pollination. Theor Appl Genet 73:751–758CrossRefGoogle Scholar
  87. van der Weerden GM, Barendse GWM (2007) A web-based searchable database developed for the EGGNET project and applied to the Radboud University Solanaceae database. Solanaceae VI: Genomics Meets Biodiversity. Proc VIth Int Solanaceae Conf, Madison, WI, USA, 23–27 July, 2006. Acta Hortic 745:503–506Google Scholar
  88. Vavilov NI (1928) Geographical centres of our cultivated plants. In: Proceedings of V international congress on genetics, New York, USA, pp 342–369Google Scholar
  89. Visser RGF, Bachem CWB, de Boer JM, Bryan GJ, Chakrabati SK, Feingold S, Gromadka R, van Ham RCHJ, Huang S, Jacobs JME, Kuznetsov B, de Melo PE, Milbourne D, Orjeda G, Sagredo B, Tang X (2009) Sequencing the potato genome: outline and first results to come from the elucidation of the sequence of the world’s third most important food crop. Am J Pot Res 86:417–429. doi: 10.1007/s12230-009-9097-8 CrossRefGoogle Scholar
  90. Vleeshouwers VGAA, Rietman H, Krenek P, Champouret N, Young C, Oh S-K, Wang M, Bouwmeester K, Vosman B, Visser RGF, Jacobsen E, Govers F, Kamoun S, van der Vossen EAG (2008) Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 3:e2875PubMedCrossRefGoogle Scholar
  91. Wali Khan S, Khatoon S (2008) Ethnobotanical studies on some useful herbs of Haramosh and Bugrote valleys in Gilgit, northern areas of Pakistan. Pak J Bot 40:43–58Google Scholar
  92. Wang J-X, Gao T-G, Knapp S (2008) Ancient Chinese literature reveals pathways of eggplant domestication. Ann Bot 102:891–897. doi: 10.1093/aob/mcn179 PubMedCrossRefGoogle Scholar
  93. Weese TL, Bohs L (2007) A three-gene phylogeny of the genus Solanum (Solanaceae). Syst Bot 32:445–463. doi: 10.1600/036364407781179671 CrossRefGoogle Scholar
  94. Wilkinson MJ (1992) The partial stability of additional chromosomes in Solanum tuberosum cv Torridon. Euphytica 60:115–122Google Scholar
  95. Young BE (ed) (2007) Endemic species distributions on the East Slope of the Andes in Bolivia and Peru. Nature Serv, Arlington, VA, USAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.The James Hutton InstituteDundeeUK

Personalised recommendations