Advertisement

Review of Paradoxes Afflicting Procedures for Electing a Single Candidate

  • Dan S. Felsenthal
Chapter
Part of the Studies in Choice and Welfare book series (WELFARE)

Abstract

Three factors motivated me to write this chapter: The recent passage (25 February 2010) by the British House of Commons of the Constitutional Reform and Governance Bill, clause #29 of which states that a referendum will be held by 31 October 2011 on changing the current single member plurality (aka first-past-the-post, briefly FPTP) electoral procedure for electing the British House of Commons to the (highly paradoxical) alternative vote (AV) procedure (aka Instant Runoff ).1 Similar calls for adopting the alternative vote procedure are voiced also in the US. My assessment that both the UK and the US will continue to elect their legislatures from single-member constituencies, but that there exist, from the point of view of social-choice theory, considerably more desirable voting procedures for electing a single candidate than the FPTP and AV procedures. A recent report by Hix et al. (2010) – commissioned by the British Academy and entitled Choosing an Electoral System – that makes no mention of standard social-choice criteria for assessing electoral procedures designed to elect one out of two or more candidates.

Keywords

Social Preference Preference Ordering Condorcet Winner Strategic Vote Approval Vote 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrow(1950).
    Arrow, K.J. (1950). A difficulty in the concept of social welfare. The Journal of Political Economy, 58(4), 328–346.CrossRefGoogle Scholar
  2. Arrow(1951).
    Arrow, K.J. (1951). Social choice and individual values. New York: Wiley.Google Scholar
  3. Balinski and Laraki(2007a).
    Balinski, M., & Laraki, R. (2007a). A theory of measuring, electing and ranking. Proceedings of the National Academy of Sciences of the United States of America (PNAS), 104, 8720–8725.CrossRefGoogle Scholar
  4. Balinski and Laraki(2007b).
    Balinski, M., & Laraki, R. (2007b). Election by majority judgement: experimental evidence, (mimeograph). Paris: Ecole Polytechnique, Centre National De La Recherche Scientifique, Laboratoire D’Econommetrie, Cahier No. 2007–28. Downoladable from http://tinyurl.com/65q6cg
  5. Balinski and Laraki(2011).
    Balinski, M., & Laraki, R. (2011). Majority judgment: measuring, ranking, and electing. Cambridge: MIT.Google Scholar
  6. Baujard and Igersheim(2009).
    Baujard, A., & Igersheim, H. (2009). Expérimentation du vote par note et du vote par approbation. Revue Economique, 60, 189–201.CrossRefGoogle Scholar
  7. Black(1958).
    Black, D. (1958). The theory of committees and elections. Cambridge: Cambridge University Press.Google Scholar
  8. Borda(1784).
    de Borda, J.C (1784). Mémoire sur les élections au scrutin. Histoire de l’Academie Royale des Sciences: Paris.Google Scholar
  9. Bordley(1983).
    Bordley, R.F. (1983). A pragmatic method for evaluating election schemes through simulation. American Political Science Review, 77, 129–139.Google Scholar
  10. Brams(1982).
    Brams, S.J. (1982). The AMS nominating system is vulnerable to truncation of preferences. Notices of the American Mathematical Society, 29, 136–138.Google Scholar
  11. Brams and Fishburn(1978).
    Brams, SJ., & Fishburn, P.C. (1978). Approval voting. American Political Science Review, 72, 831–847.CrossRefGoogle Scholar
  12. Brams and Fishburn(1983).
    Brams, SJ., & Fishburn, P.C. (1983). Approval voting. Birkhäuser: Boston.Google Scholar
  13. Brams and Fishburn(2001).
    Brams, SJ., & Fishburn, P.C. (2001). A nail-biting election. Social Choice and Welfare, 18, 409–413.CrossRefGoogle Scholar
  14. Campbell and Kelly(2002).
    Campbell, DE., & Kelly, J.S. (2002). Non-monotonicity does not imply the no-show paradox. Social Choice and Welfare, 19, 513–515.CrossRefGoogle Scholar
  15. Chamberlin et al.(1984)
    Chamberlin, J.R., Cohen, J., Coombs, C.H. (1984). Social choice observed: five presidential elections of the American Psychological Association. Journal of Politics, 46, 479–502.CrossRefGoogle Scholar
  16. Chernoff(1954).
    Chernoff, H. (1954). Rational selection of decision functions. Econometrica, 22, 422–443.CrossRefGoogle Scholar
  17. Condorcet(1785).
    Condorcet, M. (1785). Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité des voix. Paris: L’Imprimerie Royale.Google Scholar
  18. Coombs(1964).
    Coombs, C.H. (1964). A theory of data. New York: Wiley.Google Scholar
  19. Coombs et al.(1984)
    Coombs, C.H., Cohen, J.L., Chamberlin, J.R. (1984). An empirical study of some election systems. American Psychologist, 39, 140–157.CrossRefGoogle Scholar
  20. Copeland(1951).
    Copeland, A.H. (1951). A ‘reasonable’ social welfare function, mimeographed. University of Michigan, Department of Mathematics, Seminar on Applications of Mathematics to the Social Sciences.Google Scholar
  21. Dasgupta and Maskin(2004).
    Dasgupta, P., & Maskin, E. (2004). The fairest vote of all. Scientific American, 290, 92–97.CrossRefGoogle Scholar
  22. Dasgupta and Maskin(2008).
    Dasgupta, P., & Maskin, E. (2008). On the robustness of majority rule. Journal of the Europen Economic Association, 6, 949–973.CrossRefGoogle Scholar
  23. Doron(1979).
    Doron, G. (1979). The Hare voting system is inconsistent. Political Studies, 27, 283–286.CrossRefGoogle Scholar
  24. Doron and Kronick(1977).
    Doron, G., & Kronick, R. (1977). Single transferable vote: an example of a perverse social choice function. American Journal of Political Science, 21, 303–311.CrossRefGoogle Scholar
  25. Farquharson(1969).
    Farquharson, R. (1969). Theory of voting. New Haven: Yale University Press.Google Scholar
  26. Feld and Grofman(1992).
    Feld, SL., & Grofman. (1992). Who is afraid of the big bad cycle? Evidence from 36 elections. Journal of Theoretical Politics, 4, 231–237.Google Scholar
  27. Felsenthal(1992).
    Felsenthal, D.S. (1992). Proportional representation under three voting procedures: an Israeli study. Political Behavior, 14, 159–192.CrossRefGoogle Scholar
  28. Felsenthal and Machover(1992).
    Felsenthal, DS., & Machover. (1992). After two centuries should Condorcet’s voting procedure be implemented? Behavioral Science, 37, 250–273.Google Scholar
  29. Felsenthal and Machover(1995).
    Felsenthal, DS., & Machover. (1995). Who ought to be elected and who is actually elected? An empirical investigation of 92 elections under three procedures. Electoral Studies, 14, 143–169.Google Scholar
  30. Felsenthal and Machover(2008).
    Felsenthal, DS., & Machover. (2008). The majority judgement voting procedure: a critical evaluation. Homo Oeconomicus, 25, 319–333.Google Scholar
  31. Felsenthal et al.(1986)
    Felsenthal, D.S., Maoz, Z., Rapoport, A. (1986). Comparing voting systems in genuine elections: approval-plurality versus selection-plurality. Social Behaviour, 1, 41–53.Google Scholar
  32. Felsenthal et al.(1990)
    Felsenthal, D.S., Maoz, Z., Rapoport, A. (1990). The Condorcet efficiency of sophisticated voting under the plurality and approval procedures. Behavioral Science, 35, 24–33.CrossRefGoogle Scholar
  33. Felsenthal et al.(1993)
    Felsenthal, D.S., Maoz, Z. Rapoport, A. (1993). An empirical evaluation of six voting procedures: do they really make any difference? British Journal of Political Science, 23, 1–27.CrossRefGoogle Scholar
  34. Felsenthal et al.(1988)
    Felsenthal, D.S., Rapoport, A., Maoz, Z. (1988). Tacit cooperation in three-alternative non-coperative voting games: a new model of sophisticated behaviour under the plurality procedure. Electoral Studies, 7, 143–161.CrossRefGoogle Scholar
  35. Fishburn(1973).
    Fishburn, P.C. (1973). The theory of social choice. Princeton: Princeton University Press.Google Scholar
  36. Fishburn(1974).
    Fishburn, P.C. (1974). Paradoxes of voting. American Political Science Review, 68, 537–546.CrossRefGoogle Scholar
  37. Fishburn(1974a).
    Fishburn, P.C. (1974a). Social choice functions. SIAM Review, 16, 63–90CrossRefGoogle Scholar
  38. Fishburn(1974b).
    Fishburn, P.C. (1974b). On the sum-of-ranks winner when losers are removed. Discrete Mathematics, 8, 25–30.CrossRefGoogle Scholar
  39. Fishburn(1974c).
    Fishburn, P.C. (1974c). Subset choice conditions and the computation of social choice sets. The Quarterly Journal of Economics, 88, 320–329.CrossRefGoogle Scholar
  40. Fishburn(1977).
    Fishburn, P.C. (1977). Condorcet social choice functions. SIAM. Journal on Applied Mathematics, 33, 469–489.Google Scholar
  41. Fishburn(1981).
    Fishburn, P.C. (1981). Inverted orders for monotone scoring rules. Discrete Applied Mathematics, 3, 27–36.CrossRefGoogle Scholar
  42. Fishburn(1982).
    Fishburn, P.C. (1982). Monotonicity paradoxes in the theory of elections. Discrete Applied Mathematics, 4, 119–133.CrossRefGoogle Scholar
  43. Fishburn(1990).
    Fishburn, P.C. (1990). A note on ‘A note on Nanson’s rule’.Public Choice, 64, 101–102.Google Scholar
  44. Fishburn and Brams(1983).
    Fishburn, PC., & Brams, S.J. (1983). Paradoxes of preferential voting. Mathematics Magazine, 56, 207–213.CrossRefGoogle Scholar
  45. Fishburn and Gehrlein(1982).
    Fishburn, PC., & Gehrlein, W.V. (1982). Majority efficiencies for simple voting procedures: Summary and interpretation. Theory and Decision, 14, 141–153.CrossRefGoogle Scholar
  46. Fishburn and Little(1988).
    Fishburn, P.C., & Little, J.D.C. (1988). An experiment in approval voting. Management Science, 34, 555–568.CrossRefGoogle Scholar
  47. Gehrlein(1983).
    Gehrlein, W.V. (1983). Condorcet’s paradox. Theory and Decision, 15, 161–197.CrossRefGoogle Scholar
  48. Gehrlein and Lepelley(2011).
    Gehrlein, WV., & Lepelley. (2011). Voting paradoxes and group coherence: The Condorcet efficiency of voting rules. Berlin: Springer.Google Scholar
  49. Gibbard(1973).
    Gibbard, A. (1973). Manipulation of voting systems: a general result. Econometrica, 41, 587–601.CrossRefGoogle Scholar
  50. Hix et al.(2010)
    Hix, S., Johnston, R., McLean, I. (2010). Choosing an electoral system: A research report prepared for the British Academy. London: British Academy Policy Centre.Google Scholar
  51. Hoag and Hallett(1926).
    Hoag, CG., & Hallett, G.H. (1926). Proportional representation. New York: Macmillan.Google Scholar
  52. Hoffman(1983).
    Hoffman, D.T. (1983). Relative efficiency of voting systems. SIAM Journal of Applied Mathematics, 43, 1213–1219.CrossRefGoogle Scholar
  53. Holzman(1998).
    Holzman, R. (1988/89). To vote or not to vote: what is the quota? Discrete Applied Mathematics, 22, 133–141.Google Scholar
  54. Kemeny(1959).
    Kemeny, J. (1959). Mathematics without numbers. Daedalus, 88, 577–591.Google Scholar
  55. Kemeny and Snell(1960).
    Kemeny, J., & Snell, I. (1960). Mathematical models in the social sciences. Boston: Ginn.Google Scholar
  56. Kramer(1977).
    Kramer, G.H. (1977). A dynamical model of political equilibrium. Journal of Economic Theory, 16, 310–333.CrossRefGoogle Scholar
  57. Laslier and Van Der Straeten(2008).
    Laslier, J.F., & Van Der Straeten, K. (2008). A live experiment on approval voting. Experimental Economics, 11, 97–105.CrossRefGoogle Scholar
  58. Lepelley and Merlin(2001).
    Lepelley, D., & Merlin, V. (2001). Scoring runoff paradoxes for variable electorates. Economic Theory, 17, 53–80.CrossRefGoogle Scholar
  59. Lepelley et al.(2008)
    Lepelley, D., Louichi, A., Smaoui, H. (2008). On Ehrhart polynomials and probability calculations in voting theory. Social Choice and Welfare, 30, 363–383.CrossRefGoogle Scholar
  60. McGarvey(1953).
    McGarvey, D.C. (1953). A theorem on the construction of voting paradoxes. Econometrica, 21, 608–610.CrossRefGoogle Scholar
  61. McLean and Urken(1995).
    McLean, I., & Urken, A.B. (Eds.) (1995). Classics of social choice (pp. 321–359). Ann Arbor: University of Michigan Press.Google Scholar
  62. Merlin and Saari(1997).
    Merlin, V., & Saari, D.G. (1997). The Copeland method II: manipulation, monotonicity and paradoxes. Journal of Economic Theory, 72, 148–172.CrossRefGoogle Scholar
  63. Merlin and Valognes(2004).
    Merlin, V., & Valognes, F. (2004). The impact of indifferent voters on the likelihood of some voting paradoxes. Mathematical Social Sciences, 48, 343–361.CrossRefGoogle Scholar
  64. Merlin et al.(2002)
    Merlin, V., Tataru, M., Valognes, F. (2002). The likelihood of Condorcet’s profiles. Social Choice and Welfare, 19, 193–206.CrossRefGoogle Scholar
  65. Merrill(1984).
    Merrill, S. (1984). A comparison of efficiency of multicandidate electoral systems. American Journal of Political Science, 28, 23–48.CrossRefGoogle Scholar
  66. Merrill(1985).
    Merrill, S. (1985). A statistical model of Condorcet efficiency based on simulation under spatial model assumptions. Public Choice, 47, 389–403.CrossRefGoogle Scholar
  67. Mitchell and Trumbull(1992).
    Mitchell, DW., & Trumbull, W.N. (1992). Frequency of paradox in a common n-winner voting scheme. Public Choice, 73, 55–69.CrossRefGoogle Scholar
  68. Moulin(1988a).
    Moulin, H. (1988a). Axioms of cooperative decision making. Cambridge: Cambridge University Press.Google Scholar
  69. Moulin(1988b).
    Moulin, H. (1988b). Condorcet’s principle implies the no-show paradox. Journal of Economic Theory, 45, 53–63.CrossRefGoogle Scholar
  70. Nanson(1883).
    Nanson, E.J. (1883). Methods of elections. Transactions and Proceedings of the Royal Society of Victoria, 19, 197–240.Google Scholar
  71. Niemi and Frank(1985).
    Niemi, RG., & Frank, A.Q. (1985). Sophisticated voting under the plurality procedure: A test of a new definition. Theory and Decision, 19, 151–162.CrossRefGoogle Scholar
  72. Niemi and Riker(1976).
    Niemi, RG., & Riker, W.H. (1976). The choice of voting systems. Scientific American, 234, 21–27.CrossRefGoogle Scholar
  73. Niemi and Wright(1987).
    Niemi, RG., & Wright, J.R. (1987). Voting cycles and the structure of individual preferences. Social Choice and Welfare, 4, 173–183.CrossRefGoogle Scholar
  74. Niou(1987).
    Niou, E.M.S. (1987). A note on Nanson’s rule. Public Choice, 54, 191–193.CrossRefGoogle Scholar
  75. Nitzan(1985).
    Nitzan, S. (1985). The vulnerability of point-voting schemes to preference variation and strategic manipulation. Public Choice, 47, 349–370.CrossRefGoogle Scholar
  76. Nurmi(1998a).
    Nurmi, H. (1998a). Rational behavior and the design of institutions: concepts, theories and models. Cheltenham: Edward Elgar.Google Scholar
  77. Nurmi(1998b).
    Nurmi, H. (1998b). Voting paradoxes and referenda. Social Choice and Welfare, 15, 333–350.CrossRefGoogle Scholar
  78. Nurmi(1999).
    Nurmi, H. (1999). Voting paradoxes and how to deal with them. Berlin: Springer.Google Scholar
  79. Nurmi(2004).
    Nurmi, H. (2004). A comparison of some distance-based choice rules in ranking environments. Theory and Decision, 57, 5–23.CrossRefGoogle Scholar
  80. Nurmi(2007).
    Nurmi, H. (2007). Assessing Borda’s rule and its modifications. In P. Emerson (ed.), Designing an all-inclusive democracy: consensual voting procedures for use in parliaments, councils and committees (pp. 109–119). Berlin: Springer.Google Scholar
  81. Pérez(1995).
    Pérez, J. (1995). Incidence of no-show paradoxes in Condorcet choice functions. Investigaciones Economicas, 19, 139–153.Google Scholar
  82. Plott(1973).
    Plott, C.R. (1973). Path independence, rationality, and social choice. Econometrica, 41, 1075–1091.CrossRefGoogle Scholar
  83. Rapoport et al.(1988)
    Rapoport, A., Felsenthal, D.S., Maoz, Z. (1988). Proportional representation: an empirical evaluation of single-stage non-ranked voting procedures. Public Choice, 59, 151–165.CrossRefGoogle Scholar
  84. Rapoport et al.(1991)
    Rapoport, A., Felsenthal, D.S., Maoz, Z. (1991). Sincere versus strategic voting behavior in small groups. In T. R. Palfrey (ed.), Laboratory research in political economy (pp. 201–235). Ann Arbor: University of Michigan Press.Google Scholar
  85. Ray(1986).
    Ray, D. (1986). On the practical possibility of a ‘no-show paradox’ under the single transferable vote. Mathematical Social Sciences, 11, 183–189.CrossRefGoogle Scholar
  86. Richelson(1979).
    Richelson, J.T. (1979). A comparative analysis of social choice functions I, II, III: a summary. Behavioral Science, 24, 355.CrossRefGoogle Scholar
  87. Riker(1958).
    Riker, W.H. (1958). The paradox of voting and Congressional rules for voting on amendments. American Political Science Review, 52, 349–366.CrossRefGoogle Scholar
  88. Saari(1984).
    Saari, D.G. (1984). The ultimate of chaos resulting from weighted voting systems. Advances in Applied Mathematics, 5, 286–308.CrossRefGoogle Scholar
  89. Saari(1987).
    Saari, D.G. (1987). The source of some paradoxes from social choice and probability. Journal of Economic Theory, 41, 1–22.CrossRefGoogle Scholar
  90. Saari(1989).
    Saari, D.G. (1989). A dictionary for voting paradoxes. Journal of Economic Theory, 48, 443–475.CrossRefGoogle Scholar
  91. Saari(1994).
    Saari, D.G. (1994). Geometry of voting. New York: Springer Verlag.Google Scholar
  92. Saari(2000).
    Saari, D.G. (2000). Mathematical structure of voting paradoxes. Economic Theory, 15, 1–53, 55–102.Google Scholar
  93. Saari(2008).
    Saari, D.G. (2008). Disposing dictators, demystifying voting paradoxes: social choice analysis. New York: Cambridge University Press.CrossRefGoogle Scholar
  94. Satterthwaite(1975).
    Satterthwaite, M. (1975). Strategy-proofness and Arrow’s conditions: Existence and correspondence theorems for voting procedures and social choice functions. Journal of Economic Theory, 10, 187–217.CrossRefGoogle Scholar
  95. Schultze(2003).
    Schultze, M. (2003). A new monotonic and clone-independent single-winner election method. Voting Counts, 17, 9–19. http://www.macdougall.org.uk/VM/ISSUE17/I17P3.PDF
  96. Schwartz(1972).
    Schwartz, T. (1972). Rationality and the myth of the maximum. Noûs, 6, 97–117.CrossRefGoogle Scholar
  97. Schwartz(1986).
    Schwartz, T. (1986). The logic of collective choice. New York: Columbia University Press.Google Scholar
  98. Simpson(1969).
    Simpson, P. (1969). On defining areas of voter choice. Quarterly Journal of Economics, 83, 478–490.CrossRefGoogle Scholar
  99. Smith(1973).
    Smith, J.H. (1973). Aggregation of preferences with variable electorate. Econometrica, 41, 1027–1041.CrossRefGoogle Scholar
  100. Smith(2000).
  101. Straffin(1980).
    Straffin, Ph.D. (1980). Topics in the theory of voting. Boston: Birkhäuser.Google Scholar
  102. Tideman(1987).
    Tideman, T.N. (1987). Independence of clones as a criterion for voting rules. Social Choice and Welfare, 4, 185–206.CrossRefGoogle Scholar
  103. Tideman(2006).
    Tideman, N. (2006). Collective decisions and voting: the potential for public choice. Aldershot: Ashgate.Google Scholar
  104. Young(1974).
    Young, H.P. (1974). An axiomatization of Borda’s rule. Journal of Economic Theory, 9, 43–52.CrossRefGoogle Scholar
  105. Young(1977).
    Young, H.P. (1977). Extending Condorcet’s rule. Journal of Economic Theory, 16, 335–353.CrossRefGoogle Scholar
  106. Young(1995).
    Young, P. (1995). Optimal voting rules. Journal of Economic Perspectives, 9, 51–63.CrossRefGoogle Scholar
  107. Young and Levenglick(1978).
    Young, HP., & Levenglick. (1978). A consistent extension of Condorcet’s principle. SIAM Journal of Applied Mathematics, 35, 283–300.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.School of Political SciencesUniversity of HaifaHaifaIsrael
  2. 2.London School of EconomicsCentre for Philosophy of Natural and Social ScienceLondonUK

Personalised recommendations