Color Target Localization under Varying Illumination Conditions

  • Simone Bianco
  • Claudio Cusano
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6626)


In this work we have investigated the use of color descriptors to automatically locate the color target in the scene. Three different local descriptors have been tested. These descriptors are then used to return multiple localization hypotheses and a geometrical and appearance validation are introduced to select the most feasible pose. The experimental results on a public dataset of RAW images containing the Macbeth ColorChecker CC target and acquired in uncontrolled environments, showed that all the descriptors considered benefited from the hypothesis validation introduced.


  1. 1.
    Martinez-Verdú, F., Pujol, J., Capilla, P.: Calculation of the Color Matching Functions of Digital Cameras from Their Complete Spectral Sensitivities. Journal of Imaging Science and Technology 46, 15–25 (2002)Google Scholar
  2. 2.
    Bianco, S., Gasparini, F., Russo, A., Schettini, R.: A new method for RGB to XYZ transformation based on pattern search optimization. IEEE Transactions on Consumer Electronics 53, 1020–1028 (2007)CrossRefGoogle Scholar
  3. 3.
    Bianco, S., Gasparini, F., Schettini, R., Vanneschi, L.: Polynomial modeling and optimization for colorimetric characterization of scanners. Journal of Electronic Imaging 17(4), 043002-1– 043002-13 (2008)CrossRefGoogle Scholar
  4. 4.
    Hardeberg, J.Y., Schmitt, F., Brettel, H.: Multispectral color image capture using a liquid crystal tunable filter. Optical Engineering 41(10), 2532–2548 (2002)CrossRefGoogle Scholar
  5. 5.
    Gehler, P.V., Rother, C., Blake, A., Minka, T., Sharp, T.: Bayesian Color Constancy Revisited. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2008), pp. 1–8 (2008)Google Scholar
  6. 6.
    Smoyer, E.P.M., Taplin, L.A., Berns, R.S.: Experimental evaluation of museum case study digital camera systems. In: Proceedings of the IS&T’s 2005 Archiving Conference, vol. 2, pp. 85–90 (2005)Google Scholar
  7. 7.
    Marguier, J., Bhatti, N., Baker, H., Harville, M., Süsstrunk, S.: Assessing human skin color from uncalibrated images. International Journal of Imaging, Systems and Technology, special issue on Applied Color Image Processing 17(3), 143–151 (2007)CrossRefGoogle Scholar
  8. 8.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: Seventh International Conference on Computer Vision (ICCV 1999), vol. 2, pp. 1150–1157 (1999)Google Scholar
  9. 9.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  10. 10.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  11. 11.
    van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluation of color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2009) (in press), doi:10.1109/TPAMI.2009.154Google Scholar
  12. 12.
    Bianco, S., Cusano, C.: Color target localizations using local descriptors. Colore e Colorimetria: contributi multidisciplinari (2010) (in press)Google Scholar
  13. 13.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge (VOC 2009) Results (2009),

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Simone Bianco
    • 1
  • Claudio Cusano
    • 1
  1. 1.DISCo (Dipartimento di Informatica, Sistemistica e Comunicazione)Università degli Studi di Milano-BicoccaMilanoItaly

Personalised recommendations