Advertisement

SoSL: A Service-Oriented Stochastic Logic

  • Rocco De Nicola
  • Diego Latella
  • Michele Loreti
  • Mieke Massink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6582)

Abstract

The Temporal Mobile Stochastic Logic (MoSL) has been introduced in previous works by the authors for formulating properties of systems specified in StoKlaim, a Markovian extension of Klaim. The main purpose of MoSL is addressing key functional aspects of network aware programming such as distribution awareness, mobility and security and to guarantee their integration with performance and dependability guarantees. In this paper we present SoSL, a variant of MoSL, designed for dealing with specific features of Service-Oriented Computing (SOC). We also show how SoSL formulae can be model-checked against systems descriptions expressed with MarCaSPiS, a process calculus designed for addressing quantitative aspects of SOC. In order to perform actual model checking, we rely on a dedicated front-end that uses existing state-based stochastic model-checkers, like e.g. the Markov Reward Model Checker (MRMC).

Keywords

Temporal Logic Process Algebra State Formula Satisfaction Relation Service Invocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Dill, D.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235 (1994)CrossRefzbMATHGoogle Scholar
  2. 2.
    Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking Continuous Time Markov Chains. ACM Transactions on Computational Logic 1(1), 162–170 (2000)CrossRefGoogle Scholar
  3. 3.
    Baier, C., Haverkort, B., Hermanns, H., Katoen, J.-P.: Model-Checking Algorithms for Continuous-Time Markov Chains. IEEE Transactions on Software Engineering 29(6), 524–541 (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Boreale, M., Bruni, R., De Nicola, R., Loreti, M.: Sessions and pipelines for structured service programming. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051, pp. 19–38. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Brinksma, E., Hermanns, H.: Process Algebra and Markov Chains. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, pp. 183–231. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Caires, L., Cardelli, L.: A spatial logic for concurrency (part I). Information and Computation 186(2), 194–235 (2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    Cardelli, L., Gordon, A.: Anytime, anywhere: modal logics for mobile ambients. In: Twentyseventh Annual ACM Symposium on Principles of Programming Languages, pp. 365–377. ACM, New York (2000)Google Scholar
  8. 8.
    Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching-time temporal logic. In: Logic of Programs, pp. 52–71 (1981)Google Scholar
  9. 9.
    De Nicola, R., Katoen, J.P., Latella, D., Loreti, M., Massink, M.: Model checking mobile stochastic logic. Theoretical Computer Science 382(1), 42–70 (2007)CrossRefzbMATHGoogle Scholar
  10. 10.
    De Nicola, R., Latella, D., Loreti, M., Massink, M.: MarCaSPiS: a Markovian Extension of a Calculus for Services. Electronic Notes in Theoretical Computer Science 229(4), 11–26 (2009)CrossRefzbMATHGoogle Scholar
  11. 11.
    De Nicola, R., Latella, D., Loreti, M., Massink, M.: On a Uniform Framework for the Definition of Stochastic Process Languages. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 9–25. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    De Nicola, R., Latella, D., Loreti, M., Massink, M.: Rate-Based Transition Systems for Stochastic Process Calculi. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009. LNCS, vol. 5556, pp. 435–446. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    De Nicola, R., Loreti, M.: A modal logic for mobile agents. ACM Transactions on Computational Logic 5(1), 79–128 (2004)CrossRefGoogle Scholar
  14. 14.
    De Nicola, R., Loreti, M.: Multiple-Labelled Transition Systems for nominal calculi and their logics. Mathematical Structures in Computer Science 18(1), 107–143 (2008)CrossRefzbMATHGoogle Scholar
  15. 15.
    De Nicola, R., Vaandrager, F.: Action versus state based logics for transition systems. In: Guessarian, I. (ed.) LITP 1990. LNCS, vol. 469, pp. 407–419. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  16. 16.
    Fantechi, A., Gnesi, S., Lapadula, A., Mazzanti, F., Pugliese, R., Tiezzi, F.: A model checking approach for verifying cows specifications. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 230–245. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  17. 17.
    Ferrari, G., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification environment for mobile processes. ACM Publications Home Page Transactions on Software Engineering and Methodology 12(4), 440–473 (2003)CrossRefGoogle Scholar
  18. 18.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal Aspects of Computing 6(5), 512–535 (1994)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hart, S., Sharir, M.: Probabilistic Temporal Logics for Finite and Bounded Models. In: De Millo, R. (ed.) 16th Annual ACM Symposium on Theory of Computing, pp. 1–13. ACM, New York (1984) ISBN 0-89791-133-4Google Scholar
  20. 20.
    Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.: Towards model checking stochastic process algebra. In: Grieskamp, W., Santen, T., Stoddart, B. (eds.) IFM 2000. LNCS, vol. 1945, pp. 420–439. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Hillston, J.: A compositional approach to performance modelling. Distinguished Dissertation in Computer Science. Cambridge University Press, Cambridge (1996)CrossRefzbMATHGoogle Scholar
  22. 22.
    Katoen, J.-P., Khattri, M., Zapreev, I.: A Markov reward model checker. In: Second International Conference on the Quantitative Evaluation of Systems (QEST 2005), pp. 243–244 (2005) ISBN 0-7695-0418-3Google Scholar
  23. 23.
    Kwiatkowska, M., Norman, G., Parker, D.: Probabilistic Symbolic Model Checking using PRISM: A Hybrid Approach. Software Tools and Technology Transfer 6(2), 128–142 (2004)CrossRefzbMATHGoogle Scholar
  24. 24.
    Merz, S., Wirsing, M., Zappe, J.: A spatio-temporal logic for the specification and refinement of mobile systems. In: Pezzé, M. (ed.) FASE 2003. LNCS, vol. 2621, pp. 87–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Rocco De Nicola
    • 1
  • Diego Latella
    • 2
  • Michele Loreti
    • 1
  • Mieke Massink
    • 2
  1. 1.Dipartimento di Sistemi e InformaticaUniversità di FirenzeItaly
  2. 2.Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”- CNRItaly

Personalised recommendations