Advertisement

Symmetry for the Analysis of Dynamic Systems

  • Zarrin Langari
  • Richard Trefler
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6617)

Abstract

Graph Transformation Systems (GTSs) provide visual and explicit semantics for dynamically evolving multi-process systems such as network programs and communication protocols. Existing symmetry reduction techniques that generate a reduced, bisimilar model for alleviating state explosion in model checking are not applicable to dynamic models such as those given by GTSs. We develop symmetry reduction techniques applicable to evolving GTS models and the programs that generate them. We also provide an on-the-fly algorithm for generating a symmetry-reduced quotient model directly from a set of graph transformation rules. The generated quotient model is GTS-bisimilar to the model under verification and may be exponentially smaller than that model. Thus, analysis of the system model can be performed by checking the smaller GTS-bisimilar model.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apt, K., Kozen, D.: Limits for automatic verification of finite-state concurrent systems. Information Processing Letters 22, 307–309 (1986)CrossRefGoogle Scholar
  2. 2.
    Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: an unfolding-based approach. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 83–98. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Baresi, L., Heckel, R.: Tutorial introduction to graph transformation: A software engineering perspective. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 402–429. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Basler, G., Mazzucchi, M., Wahl, T., Kroening, D.: Symbolic counter abstraction for concurrent software. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 64–78. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Becker, B., Beyer, D., Giese, H., Klein, F., Schilling, D.: Symbolic invariant verification for systems with dynamic structural adaptation. In: ICSE 2006, pp. 72–81 (2006)Google Scholar
  6. 6.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Clarke, E.M., Enders, R., Filkorn, T., Jha, S.: Exploiting symmetry in temporal logic model checking. Form. Methods in Sys. Des. 9(1-2), 77–104 (1996)CrossRefGoogle Scholar
  8. 8.
    Degano, P., Montanari, U.: A model for distributed systems based on graph rewriting. J. ACM 34(2), 411–449 (1987)CrossRefGoogle Scholar
  9. 9.
    Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Form. Methods Syst. Des. 9(1/2), 105–131 (1996)CrossRefGoogle Scholar
  10. 10.
    Emerson, E.A., Trefler, R.J.: From asymmetry to full symmetry: New techniques for symmetry reduction in model checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 142–157. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. 11.
    Heckel, R.: Compositional verification of reactive systems specified by graph transformation. In: Astesiano, E. (ed.) ETAPS 1998 and FASE 1998. LNCS, vol. 1382, p. 138. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  12. 12.
    Iosif, R.: Symmetry reduction criteria for software model checking. In: Bošnački, D., Leue, S. (eds.) SPIN 2002. LNCS, vol. 2318, pp. 22–41. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Ip, C.N., Dill, D.L.: Better verification through symmetry. Form. Methods Syst. Des. 9(1-2), 41–75 (1996)CrossRefGoogle Scholar
  14. 14.
    Langari, Z.: Modelling and Analysis using Graph Transformation Systems. Ph.D. thesis, University of Waterloo, Waterloo, Canada (2010)Google Scholar
  15. 15.
    Langari, Z., Trefler, R.: Formal modeling of communication protocols by graph transformation. In: Misra, J., Nipkow, T., Karakostas, G. (eds.) FM 2006. LNCS, vol. 4085, pp. 348–363. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Langari, Z., Trefler, R.: Application of graph transformation in verification of dynamic systems. In: Leuschel, M., Wehrheim, H. (eds.) IFM 2009. LNCS, vol. 5423, pp. 261–276. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    McKay, B.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)zbMATHGoogle Scholar
  18. 18.
    Rensink, A.: Isomorphism checking in groove. ECEASST 1 (2006)Google Scholar
  19. 19.
    Rensink, A.: Explicit state model checking for graph grammars. In: Degano, P., De Nicola, R., Bevilacqua, V. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 114–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  20. 20.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformations. Foundations, vol. 1. World Scientific, Singapore (1997)zbMATHGoogle Scholar
  21. 21.
    Trefler, R.J., Wahl, T.: Extending symmetry reduction by exploiting system architecture. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009. LNCS, vol. 5403, pp. 320–334. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Zarrin Langari
    • 1
  • Richard Trefler
    • 1
  1. 1.David R. Cheriton School of Computer ScienceUniversity of WaterlooCanada

Personalised recommendations