Genetic Algorithm Optimization of Force Field Parameters: Application to a Coarse-Grained Model of RNA

  • Filip Leonarski
  • Fabio Trovato
  • Valentina Tozzini
  • Joanna Trylska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6623)


Determining force field parameters for molecular dynamics simulations of reduced models of biomolecules is a long, troublesome, and exhaustive process that is often performed manually. To improve this parametrization procedure we apply a continuous-space Genetic Algorithm (GA). GA is implemented to optimize parameters of a coarse-grained potential energy function of ribonucleic acid (RNA) molecules. The parameters obtained using GA are correctly reproducing the dynamical behavior of an RNA helix and other RNA tertiary motifs. Therefore, GA can be a useful tool for force field parametrization of the effective potentials in coarse-grained molecular models.


Molecular Dynamic Simulation Potential Energy Function Force Field Parameter Genetic Algorithm Optimization Nonbonded Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berman, H.M., Battistuz, T., Bhat, T.N., Bluhm, W.F., Bourne, P.E., Burkhardt, K., Feng, Z., Gilliland, G.L., Iype, L., Jain, S., Fagan, P., Marvin, J., Padilla, D., Ravichandran, V., Schneider, B., Thanki, N., Weissig, H., Westbrook, J.D., Zardecki, C.: Acta Crystallogr. D 58, 899–907 (2002)Google Scholar
  2. 2.
    Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz Jr., K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W., Kollman, P.A.: A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 117, 5179–5197 (1995)CrossRefGoogle Scholar
  3. 3.
    Gorecki, A., Szypowski, M., Dlugosz, M., Trylska, J.: RedMD - reduced molecular dynamics package. J. Comput. Chem. 30, 2364–2373 (2009)Google Scholar
  4. 4.
    Hodgkin, E.E., Richards, W.G.: Quantum Biol. Symp., vol. 14, pp. 105–110 (1987)Google Scholar
  5. 5.
    Haupt, R.L., Haupt, S.E.: Practical Genetic Algorithms, 2nd edn. Wiley Interscience, Hoboken (2004)zbMATHGoogle Scholar
  6. 6.
    Reith, D., Meyer, H., Mueller-Plathe, F.: CG-OPT: A software package for automatic force field design. Comp. Phys. Comm. 148, 299–313 (2002)CrossRefGoogle Scholar
  7. 7.
    Savelyev, A., Papoian, G.A.: Molecular Renormalization Group Coarse-Graining of Polymer Chains: Application to Double-Stranded DNA. Biophys. J. 96, 4044–4052 (2009)CrossRefGoogle Scholar
  8. 8.
    Schlick, T.: Molecular Modeling: An Interdisciplinary Guide, 2nd edn. Sprigner, NY (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Trovato, F., Tozzini, V.: Supercoiling and Local Denaturation of Plasmids with a Minimalist DNA Model. J. Phys. Chem. B 112, 13197–13200 (2008)CrossRefGoogle Scholar
  10. 10.
    Trylska, J.: Coarse-grained models to study dynamics of nanoscale biomolecules and their applications to the ribosome. J. Phys.: Condens. Matter 22, 453101–453113 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Filip Leonarski
    • 1
    • 2
  • Fabio Trovato
    • 3
  • Valentina Tozzini
    • 3
  • Joanna Trylska
    • 1
  1. 1.Interdisciplinary Centre for Mathematical and Computational ModellingUniversity of WarsawWarsawPoland
  2. 2.Faculty of ChemistryUniversity of WarsawWarsawPoland
  3. 3.NEST CNR-INFMScuola Normale SuperiorePisaItaly

Personalised recommendations