Advertisement

Off-line and On-line Tuning: A Study on Operator Selection for a Memetic Algorithm Applied to the QAP

  • Gianpiero Francesca
  • Paola Pellegrini
  • Thomas Stützle
  • Mauro Birattari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6622)

Abstract

Tuning methods for selecting appropriate parameter configurations of optimization algorithms have been the object of several recent studies. The selection of the appropriate configuration may strongly impact on the performance of evolutionary algorithms. In this paper, we study the performance of three memetic algorithms for the quadratic assignment problem when their parameters are tuned either off-line or on-line. Off-line tuning selects a priori one configuration to be used throughout the whole run for all the instances to be tackled. On-line tuning selects the configuration during the solution process, adapting parameter settings on an instance-per-instance basis, and possibly to each phase of the search. The results suggest that off-line tuning achieves a better performance than on-line tuning.

Keywords

Local Search Mutation Operator Crossover Operator Memetic Algorithm Quadratic Assignment Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W., et al. (eds.) GECCO 2002, pp. 11–18. Morgan Kaufmann Publishers, San Francisco (2002)Google Scholar
  2. 2.
    Balaprakash, P., Birattari, M., Stützle, T.: Improvement strategies for the F-race algorithm: Sampling design and iterative refinement. In: Bartz-Beielstein, T., Blesa Aguilera, M.J., Blum, C., Naujoks, B., Roli, A., Rudolph, G., Sampels, M. (eds.) HM 2007. LNCS, vol. 4771, pp. 108–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Adenso-Díaz, B., Laguna, M.: Fine-tuning of algorithms using fractional experimental designs and local search. Operations Research 54(1), 99–114 (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Stützle, T.: ParamILS: An automatic algorithm configuration framework. J. Artif. Intell. Res. (JAIR) 36, 267–306 (2009)zbMATHGoogle Scholar
  5. 5.
    Battiti, R., Brunato, M., Mascia, F.: Reactive Search and Intelligent Optimization. Operations Research/Computer Science Interfaces, vol. 45. Springer, Berlin (2008)zbMATHGoogle Scholar
  6. 6.
    Martens, D., Backer, M.D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.: Classification with ant colony optimization. IEEE Transactions on Evolutionary Computation 11(5), 651–665 (2007)CrossRefGoogle Scholar
  7. 7.
    Maturana, J., Fialho, A., Saubion, F., Schoenauer, M., Sebag, M.: Extreme compass and dynamic multi-armed bandits for adaptive operator selection. In: IEEE Congress on Evolutionary Computation, pp. 365–372 (2009)Google Scholar
  8. 8.
    Eiben, A.E., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter control in evolutionary algorithms. In: Lobo, F., Lima, C.F., Michalewicz, Z. (eds.) Parameter Setting in Evolutionary Algorithms, pp. 19–46. Springer, Berlin (2007)CrossRefGoogle Scholar
  9. 9.
    Whitacre, J.M., Pham, Q.T., Sarker, R.A.: Credit assignment in adaptive evolutionary algorithms. In: Cattolico (ed.) GECCO 2006, pp. 1353–1360. ACM, New York (2006)Google Scholar
  10. 10.
    Fialho, A.: Adaptive Operator Selection for Optimization. PhD thesis, Université Paris-Sud XI, Orsay, France (2010)Google Scholar
  11. 11.
    Pellegrini, P., Stützle, T., Birattari, M.: Off-line and on-line tuning: a study on MAX-MIN ant system for TSP. In: Dorigo, M., Birattari, M., Di Caro, G.A., Doursat, R., Engelbrecht, A.P., Floreano, D., Gambardella, L.M., Groß, R., Şahin, E., Sayama, H., Stützle, T. (eds.) ANTS 2010. LNCS, vol. 6234, pp. 239–250. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: towards memetic algorithms. Technical Report Caltech Concurrent Computation Program, 826, California Institute of Technology, Pasadena, CA, USA, 1989.Google Scholar
  13. 13.
    Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Transactions on Evolutionary Computation 4(4), 337–352 (2000)CrossRefGoogle Scholar
  14. 14.
    Merz, P., Freisleben, B.: A comparison of memetic algorithms, tabu search, and ant colonies for the quadratic assignment problem. In: Proc. Congress on Evolutionary Computation, pp. 2063–2070. IEEE Press, Los Alamitos (1999)Google Scholar
  15. 15.
    Merz, P., Freisleben, B.: A genetic local search approach to the quadratic assignment problem. In: 7th International Conference on Genetic Algorithms, pp. 465–472. Morgan Kaufmann, San Francisco (1997)Google Scholar
  16. 16.
    Goldberg, D.E.: Genetic algorithms and rule learning in dynamic system control. In: International Conference on Genetic Algorithms and Their Applications, pp. 8–15. Morgan Kaufmann Publishers Inc., San Francisco (1985)Google Scholar
  17. 17.
    Davis, L.: Applying adaptive algorithms to epistatic domains. In: Proc. of IJCAI, pp. 162–164 (1985)Google Scholar
  18. 18.
    Corne, D.W., Oates, M.J., Kell, D.B.: On fitness distributions and expected fitness gain of mutation rates in parallel evolutionary algorithms. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P. (eds.) PPSN VII. LNCS, vol. 2439, pp. 132–141. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In: IEEE Congress on Evolutionary Computation, pp. 1539–1546. IEEE Press, Piscataway (2005)Google Scholar
  20. 20.
    Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Machine Learning 47(2), 235–256 (2002)CrossRefzbMATHGoogle Scholar
  21. 21.
    Stützle, T., Hoos, H.H.: MAXMIN ant system. Future Generation Computer Systems 16(8), 889–914 (2000)CrossRefzbMATHGoogle Scholar
  22. 22.
    Burkard, R., Karisch, S., Rendl, F.: QAPLIB – A quadratic assignment problem library. Journal of Global Optimization (10), 391–403 (1997)Google Scholar
  23. 23.
    Stützle, T., Fernandes, S.: New benchmark instances for the QAP and the experimental analysis of algorithms. In: Gottlieb, J., Raidl, G. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 199–209. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  24. 24.
    Chiarandini, M.: Stochastic Local Search Methods for Highly Constrained Combinatorial Optimisation Problems, ch. 3. PhD thesis, Computer Science Department, Darmstadt University of Technology, Darmstadt, Germany (2005) Google Scholar
  25. 25.
    Francesca, G., Pellegrini, P., Stützle, T., Birattari, M.: Companion to Off-line and On-line Tuning: a study on operator selection for a memetic algorithm applied to the QAP (2010), http://iridia.ulb.ac.be/supp/IridiaSupp2010-015/, IRIDIA Supplementary page.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gianpiero Francesca
    • 1
  • Paola Pellegrini
    • 2
  • Thomas Stützle
    • 2
  • Mauro Birattari
    • 2
  1. 1.Dipartimento di IngegneriaUniversity of SannioBeneventoItaly
  2. 2.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations