Computational Intelligence in Future Wireless and Mobile Communications by Employing Channel Prediction Technology

  • Abid Yahya
  • Farid Ghani
  • Othman Sidek
  • R. B. Ahmad
  • M. F. M. Salleh
  • Khawaja M. Yahya
Part of the Studies in Computational Intelligence book series (SCI, volume 352)


This work presents a new scheme for channel prediction in multicarrier frequency hopping spread spectrum (MCFH-SS) system. The technique adaptively estimates the channel conditions and eliminates the need for the system to transmit a request message prior to transmit the packet data. The new adaptive MCFH-SS system employs the Quasi-Cyclic low density parity check (QC-LDPC) codes instead of the regular conventional LDPC codes. In this work performance of the proposed MCFH-SS system with adaptive channel prediction scheme is compared with the fast frequency hopping spread spectrum (FFH-SS) system. The proposed system has full control of that spectrum; it plans for the system to keep off unacceptable adjacent channel interference. When an interferer suddenly changes its carrier, the set of appropriate channels has a large return and resultantly the adjacent channel interference between the systems is reduced. It has been shown from results that the signal power in FFH system exceeds the average by at least 6.54 dB while in the proposed MCFH-SS system signal power exceeds the average only 0.84 dB for 1% (correct use) of the time. The proposed MCFH-SS system is more robust to narrow band interference and multipath fading than the FFH-SS system, because such system requires more perfect autocorrelation function.


Forward Error Correction Spread Spectrum Complementary Cumulative Distribution Function Frequency Slot Tanner Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    SSS Online. Spread spectrum history page,
  2. 2.
    Tanner, R., Woodard, J.: WCDMA - Requirements and Practical Design. Wiley, Chichester (2004)CrossRefGoogle Scholar
  3. 3.
    Simon, M., Omura, J., Scholtz, R., Levitt, B.: Spread Spectrum Communications handbook. McGraw–Hill Inc., New York (1994) (revised edition) Google Scholar
  4. 4.
    Dixon, R.C.: Spread Spectrum Systems with Commercial Applications. John Wiley & Sons, Chichester (1994)Google Scholar
  5. 5.
    Don, R.: Principles of Spread Spectrum Communication System. Springer, New York (2005)Google Scholar
  6. 6.
    Hoffman, M.A.: IEEE History Center website (2002),
  7. 7.
    Robertson, R.C., Sheltry, J.F.: Multiple Tone Interference of Frequency Hopped Noncoherent MFSK Signals Transmitted Over Ricean Fading Channels. IEEE Transactions on Communications 44(7), 867–875 (1996)CrossRefGoogle Scholar
  8. 8.
    Katsoulis, G., Robertson, R.C.: Performance Bounds for Multiple Tone Interference of Frequency-hopped Noncoherent MFSK Systems. In: Proceedings IEEE Military Communications Conference, pp. 307–312 (1997)Google Scholar
  9. 9.
    Pérez, J.J., Rodriguez, M.A., Felici, S.: Interference Excision Algorithm for Frequency Hopping Spread Spectrum Based on Undecimated Wavelet Packet Transform. Electronics Letters 38(16), 914–915 (2002)CrossRefGoogle Scholar
  10. 10.
    Baer, H.P.: Interference Effects of Hard Limiting in PN Spread-Spectrum Systems. IEEE Transactions on Communications 5, 1010–1017 (1992)Google Scholar
  11. 11.
    Cheun, K., Stark, W.E.: Performance of FHSS Systems Employing Carrier Jitter against One-Dimensional Tone Jamming. IEEE Transaction on Communications 43(10), 2622–2629 (1995)CrossRefGoogle Scholar
  12. 12.
    Lance, E., Kaleh, G.K.: A diversity scheme for a phase-coherent frequency-hopping spread-spectrum system. IEEE Transactions on Communications 45(9), 1123–1129 (1997)CrossRefGoogle Scholar
  13. 13.
    Chen, Q., Sousa, E.S., Pasupathy, S.: Multicarrier CDMA with adaptive frequency hopping for mobile radio systems. IEEE Journal on Selected Areas in Communications 14(9), 1852–1858 (1996)CrossRefGoogle Scholar
  14. 14.
    Yang, L.L., Hanzo, L.: Slow Frequency-Hopping Multicarrier DS-CDMA for Transmission over Nakagami Multipath Fading Channels. IEEE Journal on Selected Areas in Communications 19(7), 1211–1221 (2001)CrossRefGoogle Scholar
  15. 15.
    Kim, H.J., Song, I., Lee, J., Kim, S.Y.: A truncated adaptive transmission scheme for hybrid multicarrier CDMA/FDM systems in forward link. IEEE Transaction on Vehicular Technology 54(3), 967–976 (2005a)CrossRefGoogle Scholar
  16. 16.
    Jia, T., Duel-Hallen, A.: Subchannel Allocation for Multicarrier CDMA with Adaptive Frequency Hopping and Decorrelating Detection. In: Military Communications Conference, MILCOM 2006, pp. 1–7 (2006)Google Scholar
  17. 17.
    Kim, S.H., Kim, S.W.: Frequency-Hopped Multiple-Access Communications with Multicarrier On–Off Keying in Rayleigh Fading Channels. IEEE Transactions on Communications 48(10), 1692–1701 (2000)CrossRefGoogle Scholar
  18. 18.
    Sharma, S., Yadav, G., Chaturvedi, A.K.: Multicarrier on-off keying for fast frequency hopping multiple access systems in Rayleigh fading channels. IEEE Transactions on Wireless Communications 6(3), 769–774 (2007)CrossRefGoogle Scholar
  19. 19.
    Wang, J., Huang, H.: MC DS/SFH-CDMA systems for overlay systems. IEEE Transactions on Wireless Communications 1(3), 448–455 (2002)CrossRefGoogle Scholar
  20. 20.
    Elkashlan, M., Leung, C., Schober, R.: Performance analysis of channel aware frequency hopping. IEE Proceedings on Communication 153(6), 841–845 (2006)CrossRefGoogle Scholar
  21. 21.
    Hong, C.F., Yang, G.C.: Multicarrier FH codes for multicarrier FH-CDMA wireless systems. IEEE Transactions on Communications 48(10), 1626–1630 (2000)CrossRefGoogle Scholar
  22. 22.
    Nikjah, R., Beaulieu, N.C.: On Antijamming in General CDMA Systems–Part II: Antijamming Performance of Coded Multicarrier Frequency-Hopping Spread Spectrum Systems. IEEE Transactions on Wireless Communications 7(3), 888–897 (2008)CrossRefGoogle Scholar
  23. 23.
    Gallager, R.G.: Low-Density Parity-Check Code. MIT Press, Cambridge (1963)Google Scholar
  24. 24.
    Mackay, D.J.: Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory 45(2), 399–431 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error correcting coding and decoding: turbo-codes. In: IEEE ICC 1993, Geneva, Switzerland, pp. 1064–1070 (1993)Google Scholar
  26. 26.
    Chung, S.Y., Richardson, T.J., Urbanke, R.L.: Analysis of Sum-Product Decoding of Low-Density Parity-Check Codes Using a Gaussian Approximation. IEEE Transactions on Information Theory 47(2), 657–670 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Tanner, R.M.: A recursive approach to low complexity codes. IEEE Transactions on Information Theory IT-27, 533–547 (1981)CrossRefMathSciNetGoogle Scholar
  28. 28.
    Wu, X., You, X., Zhao, C.: A necessary and sufficient condition for determining the girth of quasi-cyclic LDPC codes. IEEE Transactions on Communications 56(6), 854–857 (2008)CrossRefGoogle Scholar
  29. 29.
    Hu, X.Y., Eleftheriou, E., Arnold, D.M.: Irregular progressive edge growth (PEG) Tanner graphs. In: Proceedings IEEE International. Symposium on Information Theory, Lausanne, Switzerland, p. 480 (2002)Google Scholar
  30. 30.
    Hu, X.Y., Eleftheriou, E., Arnold, D.M.: Progressive edge-growth Tanner graphs. In: IEEE Global Telecommunications Conference, pp. 995–1001 (2001)Google Scholar
  31. 31.
    Huang, C.M., Huang, J.F., Yang, C.C.: Construction of Quasi-Cyclic LDPC Codes from Quadratic Congruences. IEEE Communications Letters 12(4), 313–315 (2008)CrossRefGoogle Scholar
  32. 32.
    Abid, Y., Othman, S., Salleh, M.F.M., Farid, G.: Lower Computation and Storage Complexity of QC-LDPC Codes in Rayleigh Fading Channel. International Journal of Computer Theory and Engineering (IJCTE) 1(2), 115–118 (2009a) ISSN: 1793-821X (online version); 1793-8201 (print version)Google Scholar
  33. 33.
    Abid, Y., Othman, S., Salleh, M.F.M., Farid, G.: A New Quasi-Cyclic Low Density Parity Check Codes. In: IEEE Symposium on Industrial Electronics and Applications (ISIEA 2009), Kuala Lumpur, Malaysia, October 4-6, pp. 329–342 (2009c)Google Scholar
  34. 34.
    Abid, Y., Othman, S., Salleh, M.F.M., Farid, G.: Row Division Method to Generate QC-LDPC Codes. In: IEEE Proceedings on Fifth Advanced International Conference on Telecommunications, Venice/Mestre, Italy, May 24-28, pp. 183–187 (2009d)Google Scholar
  35. 35.
    Abid, Y., Othman, S., Salleh, M.F.M., Sardar, A.: An Efficient Encoding-Decoding of Large Girth LDPC Codes Based on Quasi-Cyclic. Australian Journal of Basic and Applied Sciences 3(3), 1734–1739 (2009b) ISSN 1991-8178Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Abid Yahya
    • 1
  • Farid Ghani
    • 1
  • Othman Sidek
    • 2
  • R. B. Ahmad
    • 1
  • M. F. M. Salleh
    • 3
  • Khawaja M. Yahya
    • 4
  1. 1.School of Computer and Communication EngineeringUniversiti Malaysia PerlisPerlisMalaysia
  2. 2.Collaborative Microelectronic Design Excellence CenterUniversiti Sains MalaysiaPulau PenangMalaysia
  3. 3.School of Electrical and Electronic EngineeringUniversiti Sains MalaysiaPulau PenangMalaysia
  4. 4.Department of Computer Systems EngineeringNWFP University of Engineering & TechnologyPeshawarPakistan

Personalised recommendations