Geophysical Excitation of the Chandler Wobble Revisited

  • Aleksander BrzezińskiEmail author
  • Henryk Dobslaw
  • Robert Dill
  • Maik Thomas
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)


The 14-month Chandler wobble is a free motion of the pole excited by geophysical processes. Several recent studies demonstrated that the combination of atmospheric and oceanic excitations contains enough power at the Chandler frequency and is significantly coherent with the observed free wobble. This paper is an extension of earlier studies by Brzeziński and Nastula (Adv Space Res 30:195–200, 2002), Brzeziński et al. (Oceanic excitation of the Chandler wobble using a 50-year time series of ocean angular momentum. In: Ádám J, Schwarz K-P (eds) Vistas for geodesy in the new millennium. IAG Symposia, vol 125. Springer, Berlin, pp 434–439, 2002) using the same method of analysis but other available estimates of atmospheric and oceanic excitation of polar motion. We also try to assess the role of land hydrology in the excitation balance by taking into account the hydrological angular momentum estimates. Our results generally confirm earlier conclusions concerning the atmospheric and oceanic excitation. Adding the hydrological excitation is found to increase slightly the Chandler wobble excitation power, while the improvement of coherence depends on the geophysical models under consideration.


Polar Motion Excitation Power Maximum Entropy Method Earth Orientation Parameter Atmospheric Angular Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research has been supported by the Polish national science foundation under grant No. N526 037 32/3972 as well as by Deutsche Forschungsgemeinschaft within the research unit “Earth rotation and dynamic processes” under grant TH864/7-1.


  1. Bizouard C, Gambis D (2009) The combined solution C04 for Earth orientation parameters consistent with International Terrestrial Reference Frame 2005. In: Drewes H (ed) Geodetic reference frames, vol 134, IAG Symposia. Springer, Berlin, pp 265–270CrossRefGoogle Scholar
  2. Brzeziński A (1992) Polar motion excitation by variations of the effective angular momentum function: considerations concerning deconvolution problem. Manuscripta Geodaetica 17:3–20Google Scholar
  3. Brzeziński A (1995) On the interpretation of maximum entropy power spectrum and cross-power spectrum in earth rotation investigations. Manuscripta Geodaetica 20:248–264Google Scholar
  4. Brzeziński A (2005) Review of the Chandler Wobble and its excitation. In: Plag H-P, Chao B, Grossand R, van Dam T (eds) Proceedings of the workshop “Forcing of polar motion in the Chandler frequency band: a contribution to understanding interannual climate variations”. Cahiers du Centre Européen de Géodynamique et de Séismologie, vol 24. Luxembourg, pp 109–120Google Scholar
  5. Brzeziński A, Nastula J (2002) Oceanic excitation of the Chandler wobble. Adv Space Res 30:195–200CrossRefGoogle Scholar
  6. Brzeziński A, Nastula J, Ponte RM (2002) Oceanic excitation of the Chandler wobble using a 50-year time series of ocean angular momentum. In: Ádám J, Schwarz K-P (eds) Vistas for geodesy in the new millennium, vol 125, IAG Symposia. Springer, Berlin, pp 434–439Google Scholar
  7. Chen JL, Wilson CR (2003) Low degree gravitational changes from earth rotation and geophysical models. Geophys Res Lett 30(24):2257. doi: 10.1029/2003GL018688 CrossRefGoogle Scholar
  8. Dill R (2008) Hydrological model LSDM for operational earth rotation and gravity field variations. Scientific Technical Report 08/09, Helmholtz Centre Potsdam, Deutsches GeoForschungsZentrum GFZ, Potsdam, Germany, p 37Google Scholar
  9. Dobslaw H, Thomas M (2007) Simulation and observation of global ocean mass anomaly. J Geophys Res 112:C05040. doi: 10.1029/2006JC004035 CrossRefGoogle Scholar
  10. Gross RS (2000) The excitation of the Chandler wobble. Geophys Res Lett 27:2329–2332CrossRefGoogle Scholar
  11. Gross RS (2008) An improved empirical model for the effect of long-period ocean tides on polar motion. J Geodesy. doi: 10.1007/s00190-008-0277-y
  12. Gross RS, Fukumori I, Menemenlis D (2003) Atmospheric and oceanic excitation of the Earth’s wobble during 1980–2000. J Geophys Res 108(B8):2370. doi: 10.1029/2002JB002143 CrossRefGoogle Scholar
  13. Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Roy J, Dennis J (1996) The NMC/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471CrossRefGoogle Scholar
  14. Salstein D. A. and R. D. Rosen (1997). Global momentum and energy signals from reanalysis systems. In: Proceedings of the 7th conference on climate variations, American Meteorological Society, Boston, MA, pp 344–348Google Scholar
  15. Uppala S, Dee D, Kobayashi S, Berrisford P, Simmons A (2008) Towards a climate data assimilation system: status update of ERA Interim. ECMWF Newsl 115:12–18Google Scholar
  16. Wilson CR, Vicente RO (1990) Maximum likelihood estimate of polar motion parameters. In: McCarthy DD, Carter WE (eds) Variations in Earth rotation, vol 59, Geophysical Monograph Series. AGU, Washington, DC, pp 151–155CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aleksander Brzeziński
    • 1
    • 2
    Email author
  • Henryk Dobslaw
    • 3
  • Robert Dill
    • 3
  • Maik Thomas
    • 3
  1. 1.Faculty of Geodesy and CartographyWarsaw University of TechnologyWarsawPoland
  2. 2.Space Research CentrePolish Academy of SciencesWarsawPoland
  3. 3.Section 1.5: Earth System ModellingDeutsches GeoForschungsZentrum GFZPotsdamGermany

Personalised recommendations