Recent Improvements in DORIS Data Processing at IGN in View of ITRF2008, the ignwd08 Solution

  • P. Willis
  • M. L. Gobinddass
  • B. Garayt
  • H. Fagard
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)

Abstract

In preparation for the computation of ITRF2008, the DORIS IGN analysis center has undertaken the task of a complete reprocessing of all DORIS data from 1993.0 to 2009.0, using all available DORIS data as well as the most recent models and estimation strategies. We provide here a detailed description of the major improvements recently made in the DORIS data processing, mainly in terms of solar radiation pressure, atmospheric drag, gravity field, and tropospheric correction. We address here the impact of the new IGN time series (ignwd08) on geodetic products using comparison to the previous IGN solutions (ignwd04). In particular, previous artifacts, such as 118-day or 1-year periodic errors in the TZ-geocenter solution or in the vertical component of high latitude DORIS tracking stations, have now disappeared, leading to more precise and reliable time series of DORIS station coordinates. Finally, possible future improvements are discussed proposing new investigations for the future.

References

  1. Altamimi Z, Collilieux X (2010) DORIS contribution to ITRF2008. Adv Space Res 45(12):1500–1509CrossRefGoogle Scholar
  2. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005, a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B9), art. B09401Google Scholar
  3. Amalvict M, Willis P, Wöppelmann G, Ivins ER, Bouin MN, Testut L (2009) Isostatic stability of the East Antarctica station Dumont d’Urville from long-term geodetic observations and geophysical models. Polar Res 28(2):193–202CrossRefGoogle Scholar
  4. Argus DF, Gordon R, Heflin M, Ma C, Eanes R, Willis P, Peltier WR, Owen S (2010) The angular velocities of the plates and the velocity of the Earth's center from space geodesy. Geophys J Int 180(3):916–960. doi:10.1111/j.1365-246X.2009.04463 CrossRefGoogle Scholar
  5. Beckley BD, Lemoine FG, Luthcke SB, Ray RD, Zelensly NP (2007) A reassessment of global and regional mean sea level rends from TOPEX and Jason-1 altimetry ased on revised reference frame and orbits. Geophys Res Lett 34(14):L14608CrossRefGoogle Scholar
  6. Bock O, Willis P, Lacarra M, Bosser P (2010) An intercomparison of tropospheric delays estimated from DORIS and GPS data, Adv Space Res 46(12):1648–1660CrossRefGoogle Scholar
  7. Boehm J (2004) Vienna mapping functions in VLBI analysis. Geophys Res Lett 31:L01603CrossRefGoogle Scholar
  8. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF), a new empirica mapping function based on numerical weather model data. Geophys Res Lett 33(7), art. L07304Google Scholar
  9. Briole P, Willis P, Dubois J, Charade O (2009) Potential applications of the DORIS system. A geodetic study of the Socorro Island (Mexico) coordinate time series. Geophys J Int 178(1):581–590CrossRefGoogle Scholar
  10. Coulot D, Collilieux X, Pollet A, Berio P, Gobinddass ML, Soudarin L, Willis P (2009) Genetically modified networks. A genetic algorithm contribution to space geodesy, application to the transformation of SLR and DORIS EOP time series. In: European Geocience Union meeting, Vienna, Austria, EGU2009-7988Google Scholar
  11. Fagard H (2006) Twenty years of evolution for the DORIS permanent network, from its initial deployment to its renovation. J Geod 80(8–11):429–456CrossRefGoogle Scholar
  12. Flouzat M, Bettinelli P, Willis P, Avouac JP, Heriter T, Gautam U (2009) Investigating tropospheric effects and seasonal position variations in GPS and DORIS time series from the Nepal Himalaya. Geophys J Int 178(3):1246–1259CrossRefGoogle Scholar
  13. Gambis D (2006) DORIS and the determination of the Earth’s polar motion. J Geod 80(8–11):649–656CrossRefGoogle Scholar
  14. Gobinddass ML, Willis P, de Viron O, Sibthorpe AJ, Zelensky NP, Ries JC, Ferland R, Bar-Sever YE, Diament M (2009a) Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modelling. J Geod 83(9):849–858CrossRefGoogle Scholar
  15. Gobinddass ML, Willis P, de Viron O, Sibthorpe A, Zelensky NP, Ries JC, Ferland R, Bar-sever YE, Diament M, Lemoine FG (2009b) Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure. Adv Space Res 44(11):1279–1287CrossRefGoogle Scholar
  16. Gobinddass ML, Willis P, Diament M, Menvielle M (2010). Refining DORIS atmospheric drag estimation in preparation of ITRF2008. Adv Space Res 46(12):1566–1577Google Scholar
  17. Kierulf HP, Pettersen BR, MacMillan DS, Willis P (2009) The kinematics of Ny-Alesund from space geodetic data. J Geodyn 48(1):37–46CrossRefGoogle Scholar
  18. le Bail K (2006) Estimating the noise in space-geodetic positioning, the case of DORIS. J Geod 80(8–11):541–565CrossRefGoogle Scholar
  19. McCarthy D, Petit G (eds) (2004) IERS 2003 Conventions. In: IERS Techn Note 32, Frankfurt-am-Main, GermanyGoogle Scholar
  20. Mercier F, Cerri L, Berthias JP (2010) Jason-2 DORIS phase measurement processing. Adv Space Res 45(12):1441–1454. doi:10.1016/j.asr.2009.12.002 CrossRefGoogle Scholar
  21. Morel L, Willis P (2002) Parameter sensitivity of TOPEX orbit and derived mean sea level to DORIS stations coordinates. Adv Space Res 30(2):255–263CrossRefGoogle Scholar
  22. Morel L, Willis P (2005) Terrestrial reference frame effects on global sea level rise determination from TOPEX/Poseidon altimetric data. Adv Space Res 36(3):358–368CrossRefGoogle Scholar
  23. Nocquet JM, Willis P, Garcia S (2006) Plate kinematics of Nubia-Somalia using a combined DORIS and GPS solution. J Geod 80(8–11):591–607CrossRefGoogle Scholar
  24. Noll C, Soudarin L (2006) On-line resources supporting the data, products, and information infrastructure for the International DORIS Service. J Geod 80(8–11):419–427CrossRefGoogle Scholar
  25. Soudarin L, Crétaux JF (2006) A model of present-day tectonic plate motions from 12 years of DORIS measurements. J Geod 80(8–11):609–624CrossRefGoogle Scholar
  26. Stepanek P, Dousa J, Filler V (2010) DORIS data analysis at Geodetic Observatory Pecny using single-satellites and multi-satellites geodetic solutions. Adv Space Res 46(12):1578–1592CrossRefGoogle Scholar
  27. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02, an improved Earth gravity field model from GRACE. J Geod 79(8):467–478CrossRefGoogle Scholar
  28. Tavernier G, Soudarin L, Larson K, Noll C, Ries J, Willis P (2002) Current status of the DORIS Pilot experiment. Adv Space Res 30(2):151–156Google Scholar
  29. Valette JJ, Lemoine FG, Ferrage P, Yaya P, Altamimi Z, Willis P, Soudarin L, (2010) IDS contribution to ITRF2008 Adv Space Res 46(12):1614–1632Google Scholar
  30. Visser PNAM, van den IJssel J, van Helleputte T et al (2009) Orit determination for the GOCE satellite. Adv Space Res 43(5):760–768CrossRefGoogle Scholar
  31. Williams SDP, Willis P (2006) Error analysis of weekly station coordinates in the DORIS network. J Geod 80(8–11):429–456Google Scholar
  32. Willis P, Haines B, Berthias JP, Sengenes P, Le Mouel JL (2004) Behavior of the DORIS/Jason oscillator over the South Atlantic Anomaly. CR Geosci 336(9):839–846CrossRefGoogle Scholar
  33. Willis P, Deleflie F, Barlier F, Bar-Sever YE, Romans L (2005a) Effects of thermosphere total density perturbations on LEO orbits during severe geomagnetic conditions (Oct – Nov 2003). Adv Space Res 36(3):522–533CrossRefGoogle Scholar
  34. Willis P, Desai SD, Bertiger WI, Haines BJ, Auriol A (2005b) DORIS satellite antenna maps derived from long-term residuals time series. Adv Space Res 36(3):486–497CrossRefGoogle Scholar
  35. Willis P, Jayles C, Bar-Sever YE (2006) DORIS, from altimeric missions orbit determination to geodesy. CR Geosci 338(14–15):968–979CrossRefGoogle Scholar
  36. Willis P, Haines BJ, Kuang D (2007) DORIS satellite phase center determination and consequences on the derived scale of the Terrestrial Reference Frame. Adv Space Res 39(10):1589–1596CrossRefGoogle Scholar
  37. Willis P, Ries JC, Zelensky NP, Soudarin L, Fagard H, Pavlis EC, Lemoine FG (2009) DPOD2005: realization of a DORIS terrestrial reference frame for precise orbit determination. Adv Space Res 44(5):535–544CrossRefGoogle Scholar
  38. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Soudarin L, Tavernier G, Valette JJ (2010a) The International DORIS Service, toward maturity. Adv Space Res 45(12):1408–1420. doi:10.1016/j.asr.2009.11.018 CrossRefGoogle Scholar
  39. Willis P, Boucher C, Fagard H, Garayt B, Gobinddass ML (2010b) Contributions of the French Institut Géographique National (IGN) to the International DORIS Service. Adv Space Res 45(12):1470–1480. doi:10.1016/j.asr.2009.09.019 CrossRefGoogle Scholar
  40. Zelensky NP, Berthias JP, Lemoine FG (2006) DORIS time bias estimated using Jason-1, TOPEX/Poseidon and Envisat orbits. J Geod 83(9):497–506CrossRefGoogle Scholar
  41. Zelensky NP, Berthias JP, Lemoine FG (2006) DORIS time bias estimated using Jason-1, TOPEX/Poseidon and ENVISAT orbits. J Geod 80(8–11):497–506Google Scholar
  42. Zelensky NP, Lemoine FG, Chinn DS, Rowlands DD, Luthcke SB, Beckley D, Pavlis D, Ziebart A, Sibthorpe A, Willis P, Luceri V (2010) DORIS/SLR POD modeling improvements for Jason-1 and Jason-2. Adv Space Res 46(12):1541–1558Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. Willis
    • 1
    • 2
  • M. L. Gobinddass
    • 3
    • 2
  • B. Garayt
    • 4
  • H. Fagard
    • 4
  1. 1.Institut Géographique NationalDirection TechniqueSaint-MandéFrance
  2. 2.Institut de Physique du Globe de ParisPRES Sorbonne Paris Cité, UFR STEPParisFrance
  3. 3.Institut Géographique National, LAREGMarne-la-ValléeFrance
  4. 4.Institut Géographique National, Service de Géodésie et de NivellementSaint-MandéFrance

Personalised recommendations