Reconstruction of a Torsion Balance and the Results of the Test Measurements

Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)

Abstract

During recent investigations concerning geodetic applications of the torsion balance measurements several problems arose, which required performing new torsion balance measurements. For that reason an Eötvös-Rybár (Auterbal) torsion balance, which has been out of operation for many decades, was reconstructed and modernized. The scale reading has been automated and its accuracy has been improved by using CCD sensors. Calibration and processing of field measurements were computerized to meet today’s requirements. Test measurements have shown that this instrument was able to work according to the expectations of our age.

References

  1. Csapó G (1991) Δg and vertical gradient measurements by LCR gravimeres and observations by E54 torsion balance on the microbase of ELGI in the Mátyás cave. (ELGI datastore) (in Hungarian)Google Scholar
  2. Csapó G, Völgyesi L (2004) New measurements for the determination of the local vertical gradients. Magyar Geofizika 45, 2:64–69 (in Hungarian)Google Scholar
  3. Dobróka M, Völgyesi L (2008) Inversion reconstruction of gravity potential based on gravity gradients. Math Geosci 40(3):299–311CrossRefGoogle Scholar
  4. Eötvös R (1906) Bestimmung der Gradienten der Schwerkraft und ihrer Niveauflächen mit Hilfe der Drehwaage. Verhandl. d. XV. allg. Konferenz der Internat. Erdmessung in BudapestGoogle Scholar
  5. Haalck H (1950) Die vollständige Berechnung örtlicher gravimetrisher Störfelder aus Drehwaagemessungen. Veröffentlichungen des Geodätischen Institutes Potsdam, Nr. 4, PotsdamGoogle Scholar
  6. Polcz I (2003) The history of the Lorand Eötvös Geophysical Institute I. ELGI (külön kiadvány) (in Hungarian)Google Scholar
  7. Tóth Gy (2007): Vertical gravity gradient interpolation in a grid of Eötvös torsion balance measurements. Geomatikai Közlemények X 29–36 (in Hungarian)Google Scholar
  8. Tóth Gy, Völgyesi L, Csapó G (2005) Determination of vertical gradients from torsion balance measurements. IAG Symposia Vol 129, Gravity, Geoid and Space Missions C, Jekeli L, Bastos J, Fernandes (eds.), Springer, pp 292–297Google Scholar
  9. Ultmann Z (2009) Investigation of the gradients of gravity in the Mátyás cave. Diplomawork, BME Építőmérnöki Kar (in Hungarian)Google Scholar
  10. Völgyesi L (1993) Interpolation of deflection of the vertical based on gravity gradients. Periodica Polytechnica Civ Eng 37(2):137–166Google Scholar
  11. Völgyesi L (1995) Test Interpolation of deflection of the vertical in hungary based on gravity gradients. Periodica Polytechnica Civ Eng 39(1):37–75Google Scholar
  12. Völgyesi L (2001a) Local geoid determinations based on gravity gradients. Acta Geodaetica et Geophysica Hung 36(2):153–162CrossRefGoogle Scholar
  13. Völgyesi L (2001b) Geodetic applications of torsion balance measurements in Hungary. Reports on Geodesy, Warsaw University of Technology, 57(2), pp 203–212Google Scholar
  14. Völgyesi L (2005) Deflections of the vertical and geoid heights from gravity gradients. Acta Geodaetica et Geophysica Hungarica 40(2):147–159CrossRefGoogle Scholar
  15. Völgyesi L, Tóth Gy, Csapó G (2004) Determination of gravity anomalies from torsion balance measurements. Gravity, Geoid and Space Missions GGSM 2004. Springer, Heidelberg, 129:292–297Google Scholar
  16. Völgyesi L, Tóth Gy, Csapó G, Szabó Z (2005) The present state of geodetic applications of Torsion balance measurements in Hungary. Geodézia és Kartográfia, 57(5), 3–12 (in Hungarian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Geodesy and Surveying, Faculty of Civil EngineeringBudapest University of Technology and EconomicsBudapestHungary
  2. 2.Research Group of Physical Geodesy and Geodynamics of the Hungarian Academy of SciencesBudapestHungary

Personalised recommendations