A Dense Global Velocity Field Based on GNSS Observations: Preliminary Results

  • C. Bruyninx
  • Z. Altamimi
  • M. Becker
  • M. Craymer
  • L. Combrinck
  • A. Combrink
  • J. Dawson
  • R. Dietrich
  • R. Fernandes
  • R. Govind
  • T. Herring
  • A. Kenyeres
  • R. King
  • C. Kreemer
  • D. Lavallée
  • J. Legrand
  • L. Sánchez
  • G. Sella
  • Z. Shen
  • A. Santamaría-Gómez
  • G. Wöppelmann
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)

Abstract

In a collaborative effort with the regional sub-commissions within IAG sub-commission 1.3 “Regional Reference Frames”, the IAG Working Group (WG) on “Regional Dense Velocity Fields” (see http://epncb.oma.be/IAG) has made a first attempt to create a dense global velocity field. GNSS-based velocity solutions for more than 6,000 continuous and episodic GNSS tracking stations, were proposed to the WG in reply to the first call for participation issued in November 2008. The combination of a part of these solutions was done in a two-step approach: first at the regional level, and secondly at the global level. Comparisons between different velocity solutions show an RMS agreement between 0.3 and 0.5 mm/year resp. for the horizontal and vertical velocities. In some cases, significant disagreements between the velocities of some of the networks are seen, but these are primarily caused by the inconsistent handling of discontinuity epochs and solution numbers. In the future, the WG will re-visit the procedures in order to develop a combination process that is efficient, automated, transparent, and not more complex than it needs to be.

References

  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007a) ITRF2005: a new release of the international terrestrial reference frame based on time series of station positions and earth orientation parameters. J Geophys Res 112:B09401. doi:10.1029/2007JB004949 CrossRefGoogle Scholar
  2. Altamimi Z, Sillard P, and Boucher C (2007b). CATREF software: Combination and analysis of terrestrial reference frames. LAREG, Technical, Institut Géographique National, Paris, FranceGoogle Scholar
  3. Beutler G, Bock H, Brockmann E, Dach R, Fridez P, Gurtner W, Habrich U, Hugentobler D, Ineichen A, Jaeggi M, Meindl L, Mervart M, Rothacher S, Schaer R, Schmid T, Springer P, Steigenberger D, Svehla D, Thaller C, Urschl R, Weber (2007) Bernese GPS software version 5.0. ed. Urs Hugentobler, R. Dach, P. Fridez, M. Meindl, Univ. BernGoogle Scholar
  4. Blewitt G (2008) Fixed point theorems of GPS carrier phase ambiguity resolution and their application to massive network processing: Ambizap. J Geophys Res 113:B12410. doi:10.1029/2008JB005736 CrossRefGoogle Scholar
  5. Bruyninx C, Altamimi Z, Boucher C, Brockmann E, Caporali A, Gurtner W, Habrich H, Hornik H, Ihde J, Kenyeres A, Mäkinen J, Stangl G, van der Marel H, Simek J, Söhne W, Torres JA, Weber G (2009). The European Reference Frame: Maintenance and Products, IAG Symposia Series, “Geodetic Reference Frames”, Springer, vol 134, pp 131–136, DOI: 10.1007/978-3-642-00860-3_20
  6. Davis Ph, Blewitt G (2000) Methodology for global geodetic time series estimation: A new tool for geodynamics. J Geophys Red 105(B5):11083–11100CrossRefGoogle Scholar
  7. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J Geod 83:191–198. doi:10.1007/s00190-008-0300-3 CrossRefGoogle Scholar
  8. Drewes H, Hornik H, Ádám J, Rózsa S (eds) (2008). The geodesist handbook 2008. Journal of Geodesy, Springer, 82 (11):661–846Google Scholar
  9. Fernandes RMS, Miranda JM, Meijninger BML, Bos MS, Noomen R, Bastos L, Ambrosius BAC, Riva REM (2007) Surface velocity field of the Ibero-Maghrebian Segment of the Eurasia-Nubia plate boundary. Geophys J Int 169:315–324. doi:10.1111/j.1365-246X.2006.03252.x CrossRefGoogle Scholar
  10. Herring TA, King RW, McClusky SC (2007) Introduction to GAMIT/GLOBK, Release 10.3, Mass. Instit. of Tech., CambridgeGoogle Scholar
  11. Santamaria-Gomez A, Bouin M-N, and Wöppelmann G. An improved GPS data analysis strategy for tide gauge benchmark monitoring. (Submitted)Google Scholar
  12. Seemüller W, Seitz M, Sánchez L, Drewes H (2009) The position and velocity solution SIR09P01 of the IGS Regional Network Associate Analysis Centre for SIRGAS (IGS RNAAC SIR). DGFI Report No. 85. DGFI, Munich. Available at http://www.sirgas.org/index.php?id=97
  13. Wöppelmann G, Letetrel C, Santamaria A, Bouin M-N, Collilieux X, Altamimi Z, Williams SDP, Martin Miguez B (2009) Rates of sea-level change over the past century in a geocentric reference frame. Geophys Res Lett 36:L12607. doi:10.1029/2009GL038720 CrossRefGoogle Scholar
  14. Zumberge J, Heflin M, Jefferson D, Watkins M, Webb F (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–501CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. Bruyninx
    • 1
  • Z. Altamimi
    • 2
  • M. Becker
    • 3
  • M. Craymer
    • 4
  • L. Combrinck
    • 5
  • A. Combrink
    • 5
  • J. Dawson
    • 6
  • R. Dietrich
    • 7
  • R. Fernandes
    • 8
    • 9
  • R. Govind
    • 6
  • T. Herring
    • 10
  • A. Kenyeres
    • 11
  • R. King
    • 10
  • C. Kreemer
    • 12
  • D. Lavallée
    • 12
  • J. Legrand
    • 13
  • L. Sánchez
    • 14
  • G. Sella
    • 15
  • Z. Shen
    • 16
  • A. Santamaría-Gómez
    • 17
  • G. Wöppelmann
    • 2
    • 18
  1. 1.Royal Observatory of BelgiumBrusselsBelgium
  2. 2.Institut Géographique National, Service de la recherche/LAREGChamps-sur-MarneFrance
  3. 3.Institute of Physical GeodesyTechnische Universität DarmstadtDarmstadtGermany
  4. 4.Geodetic Survey DivisionNatural Resources CanadaOttawaCanada
  5. 5.HartRAOKrugersdorpSouth Africa, Canada
  6. 6.Geoscience AustraliaSymonstonAustralia
  7. 7.Institut für Planetare GeodäsieTU DresdenDresdenGermany
  8. 8.University of Beira Interior, IDLCovilhãPortugal
  9. 9.Delft University of Technology, DEOS – PSGDelftThe Netherlands
  10. 10.Massachusetts Institute of TechnologyCambridgeUSA
  11. 11.FOMI Satellite Geodetic ObservatoryBudapestHungary
  12. 12.Nevada Bureau of Mines and Geology, and Seismological LaboratoryUniversity of NevadaRenoUSA
  13. 13.Faculty of Aerospace Engineering, DEOS – PSGDelft University of TechnologyDelftNetherlands
  14. 14.Royal Observatory of BelgiumBrusselsBelgium
  15. 15.Deutsches Geodätisches ForschungsinstitutMünchenGermany
  16. 16.NOAA-National Geodetic Survey (NGS)Silver SpringUSA
  17. 17.Department of Earth and Space SciencesUniversity of CaliforniaLos AngelesUSA
  18. 18.Instituto Geográfico NacionalMadridSpain

Personalised recommendations