Advertisement

Impact of Albedo Radiation on GPS Satellites

  • C. J. Rodriguez-Solano
  • U. HugentoblerEmail author
  • P. Steigenberger
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)

Abstract

GPS satellite orbits available from the International GNSS Service (IGS) show a peculiar pattern in the SLR residuals at the few centimeter level that is related to radiation pressure mismodeling. Part of the mismodeling may be attributed to neglecting the solar radiation reflected and reemitted from the Earth, the albedo radiation, as most IGS analysis centers do not yet take into account this radiation pressure component. In this study the relative importance of different albedo model constituents is analyzed. The impact of nine albedo models with increasing complexity is investigated using 1 year of global GPS data from the IGS tracking network. The most important model components are the solar panels of the satellites while different Earth radiation models have a minor impact on orbits at GPS altitudes. Albedo radiation has the potential to remove part of the anomalous SLR residual pattern observed by Urschl et al. (Calibrating GNSS orbits with SLR tracking data. Proceedings of the 15th International Workshop on Laser Ranging, 2008) in a Sun-fixed reference frame.

Keywords

Satellite Laser Range International GNSS Service Satellite Model Earth Radiation Satellite Laser Range Residual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barkstrom BR (1984) The earth radiation budget experiment (ERBE). Bull Am Meteorol Soc 65(11):1170–1185CrossRefGoogle Scholar
  2. Bar-Sever Y, Kuang D (2004) Improved solar-radiation pressure models for GPS satellites. NASA Tech Briefs (NPO-41395)Google Scholar
  3. Borderies N, Longaretti PY (1990) A new treatment of the albedo radiation pressure in the case of a uniform albedo and of a spherical satellite. Celestial Mech Dyn Astron 49:69–98CrossRefGoogle Scholar
  4. Dach R, Hugentobler U, Fridez P, Meindl M (2007) Bernese GPS Software, Version 5.0. Astronomical Institute, University of BernGoogle Scholar
  5. Dow JM, Neilan RE, Rizos C (2009) The International GNSS Service (IGS) in a Changing Landscape of Global Navigation Satellite Systems. J Geodes 83(3–4):191–198CrossRefGoogle Scholar
  6. Fliegel H, Gallini T (1996) Solar force modelling of block IIR global positioning system satellites. J Spacecraft Rockets 33(6):863–866CrossRefGoogle Scholar
  7. Fliegel H, Gallini T, Swift E (1992) Global positioning system radiation force model for geodetic applications. J Geophys Res 97(B1):559–568CrossRefGoogle Scholar
  8. Knocke PC, Ries JC and Tapley BD (1988) Earth radiation pressure effects on satellites. Proceedings of AIAA/AAS Astrodynamics Conference, pp 577–587Google Scholar
  9. Kusterer J (2009) CERES Data and Information. http://eosweb.larc.nasa.gov/PRODOCS/ceres/table_ceres.html. Accessed 30 Sep 2009
  10. Martin C, Rubincam D (1996) Effects of earth albedo on the LAGEOS I satellite. J Geophys Res 101(B2):3215–3226CrossRefGoogle Scholar
  11. Rodriguez-Solano CJ (2009) Impact of albedo modelling on GPS orbits. Master Thesis, Technische Universität MünchenGoogle Scholar
  12. Sibthorpe AJ (2006) Precision non-conservative force modelling for low earth orbiting spacecraft. PhD Thesis, University College LondonGoogle Scholar
  13. Springer T, Beutler G, Rothacher M (1999) A new solar radiation pressure model for GPS satellites. Adv Space Res 23(4):673–676CrossRefGoogle Scholar
  14. Steigenberger P, Hugentobler U, Lutz S, Dach R (2011) CODE contribution to the IGS reprocessing. Tech. Rep. 1/2011. URL http://www.iapg.bv.tum.de/mediadb/1352924/1352925/CODE_Repro1.pdf
  15. Urschl C, Gurtner W, Hugentobler U, Schaer S, Beutler G (2005) Validation of GNSS orbits using SLR observations. Adv Space Res 36(3):412–417CrossRefGoogle Scholar
  16. Urschl C, Beutler G, Gurtner W, Hugentobler U and Schaer S (2008) Calibrating GNSS orbits with SLR tracking data. Proceedings of the 15th International Workshop on Laser Ranging, pp 23–26Google Scholar
  17. Wielicki BA, Barkstrom BR, Harrison EF, Lee RB III, Smith GL, Cooper JE (1996) Clouds and the earth’s radiant energy system (CERES): an earth observing system experiment. Bull Am Meteorol Soc 77(5):853–868CrossRefGoogle Scholar
  18. Ziebart M, Edwards S, Adhya S, Sibthorpe A, Arrowsmith P, Cross P (2004) High precision GPS IIR orbit prediction using analytical non-conservative force models. Proc ION GNSS 2004:1764–1770Google Scholar
  19. Ziebart M, Adhya S, Sibthorpe A, Edwards S, Cross P (2005) Combined radiation pressure and thermal modeling of complex satellites: Algorithms and on-orbit tests. Adv Space Res 36(3):424–430CrossRefGoogle Scholar
  20. Ziebart M, Sibthorpe A, Cross P (2007) Cracking the GPS – SLR Orbit Anomaly. Proc. of ION GNSS 2007, pp 2033–2038Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. J. Rodriguez-Solano
    • 1
  • U. Hugentobler
    • 1
    Email author
  • P. Steigenberger
    • 1
  1. 1.Institute for Astronomical and Physical GeodesyTechnische Universität MünchenMunichGermany

Personalised recommendations