Estimating Horizontal Tropospheric Gradients in DORIS Data Processing: Preliminary Results

  • P. Willis
  • Y. E. Bar-Sever
  • O. Bock
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)


Estimating horizontal tropospheric gradients is a common practice in VLBI and GPS data analyses. We investigate here the possibility to do the same for DORIS. We reprocessed all 2007 DORIS data for all satellites, using exactly the same strategy as the latest ignwd08 solution (Willis et al., Adv Space Res 45(12):1470–1480, 2010) but adding two new parameters per day to account for any asymmetry of the tropospheric delays. When averaged over the full year the DORIS north gradient estimates show a significant correlation with GPS estimates at 33 co-located sites. The east gradient is loosely determined with DORIS due to the north-south orientation of the satellites passes in 2007. Typical values are below 1 mm and North component shows a latitude dependency, negative values in the Northern hemisphere and positive values in the Southern hemisphere.

The stacking of DORIS station weekly coordinates provides a more realistic value for a factor of unit weight when done using gradient estimation. Station coordinates also indicate a small improvement in internal consistency when compared to a 1-year position and velocity solution without estimating gradients. The DORIS-derived tropospheric gradients may still absorb other types of un-modeled errors, but estimation of such parameters should be investigated in more detail before reprocessing the entire DORIS data set in view of the next ITRF realization, following ITRF2008.


Precise Point Position Satellite Laser Range International GNSS Service Solar Radiation Pressure Precise Orbit Determination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Part of this work was supported by the Centre National d’Etudes Spatiales (CNES). Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Navigation, under a contract with the National Aeronautics and Space Administration. This paper is IPGP contribution number 2635.


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005, A new release of the International Terrestrial Reference Frame based on time series of station positions and Earth orientation parameters. J Geophys Res 112(B9):B09401CrossRefGoogle Scholar
  2. Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3):5019–5035CrossRefGoogle Scholar
  3. Bock O, Willis P, Lacarra M, Bosser P (2010) An inter-comparison of zenith tropospheric delays derived from DORIS and GPS data. Adv Space Res 46(12):1648–1660CrossRefGoogle Scholar
  4. Boehm J, Niell A, Tregoning P, Schuh H (2006) Global Mapping Function (GMF): a new empirica mapping function based on numerical weather model data. Geophys Res Lett 33(7):L07304CrossRefGoogle Scholar
  5. Byun SH, Bar-Sever YE (2009) A new type of troposphere zenith path delay product of the International GNSS Service. J Geod 83(3–4):367–373Google Scholar
  6. Cerri L, Berthias JP, Bertiger WI, Haines BJ, Lemoine FG, Mercier F, Ries JC, Willis P, Zelensky NP, Ziebart M (2010) Precision orbit determination standards for the Jason series of altimeter missions. Mar Geod 33:379–418CrossRefGoogle Scholar
  7. Fagard H (2006) Twenty years of evolution for the DORIS permanent network: from its initial deployment to its renovation. J Geod 80(8–11):429–456CrossRefGoogle Scholar
  8. Flouzat M, Bettinelli P, Willis P, Avouac JP, Heriter T, Gautam U (2009) Investigating tropospheric effects and seasonal position variations in GPS and DORIS time series from the Nepal Himalaya. Geophys J Int 178(3):1246–1259CrossRefGoogle Scholar
  9. Gobinddass ML, Willis P, de Viron O, Sibthorpe AJ, Zelensky NP, Ries JC, Ferland R, Bar-Sever YE, Diament M (2009a) Systematic biases in DORIS-derived geocenter time series related to solar radiation pressure mis-modelling. J Geod 83(9):849–858CrossRefGoogle Scholar
  10. Gobinddass ML, Willis P, de Viron O, Sibthorpe A, Zelensky NP, Ries JC, Ferland R, Bar-sever YE, Diament M, Lemoine FG (2009b) Improving DORIS geocenter time series using an empirical rescaling of solar radiation pressure. Adv Space Res 44(11):1279–1287CrossRefGoogle Scholar
  11. Gobinddass ML, Willis P, Diament M, Menvielle M (2010) Refining DORIS atmospheric drag estimation in preparation of ITRF2008. Adv Space Res 46(12):1566–1577. doi: 10.1016/j.asr.2010.04.004
  12. Hulley GC, Pavlis EC (2007) A ray-tracing technique for improving Satellite Laser Ranging atmospheric delay corrections, including the effects of horizontal gradients. J Geophys Res 112:B06417. doi: 10.1029/2006JB004834 CrossRefGoogle Scholar
  13. MacMillan DS (1995) Atmospheric gradients from Very Long Baseline interferometry observations. Geophys Res Lett 22(9):1041–1044CrossRefGoogle Scholar
  14. McCarthy D, Petit G (eds) (2004) IERS 2003 Conventions. IERS Technical Note 32, Frankfurt, GermanyGoogle Scholar
  15. Noll CE (2010) The Crustal Dynamics Data Information System: a resource to support scientific analysis using space geodesy. Adv Space Res 45(12):1421–1440. doi: 10.1016/j.asr.2010.01.018 CrossRefGoogle Scholar
  16. Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions: principles and aims. J Geodyn 33(1–2):3–20CrossRefGoogle Scholar
  17. Rummel R, Rothacher M, Beutler G (2005) Integrated Global Geodetic Observing System (IGGOS): science rationale. J Geodyn 40(4–5):357–362CrossRefGoogle Scholar
  18. Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2006) Multi-technique comparisons of tropospheric delays derived during the CONT02 campaign. J Geod 79(10–11):613–623CrossRefGoogle Scholar
  19. Tapley B, Ries J, Bettadpur S, Chambers D, Cheng M, Condi F, Gunter B, Kang Z, Nagel P, Pastor R, Pekker T, Poole S, Wang F (2005) GGM02 – an improved Earth gravity field model from GRACE. J Geod 79(8):467–478CrossRefGoogle Scholar
  20. Valette JJ, Lemoine FG, Ferrage P, Yaya P, Altamimi Z, Willis P, Soudarin L (2010) IDS contribution to ITRF2008. Adv Space Res 46(12):1614–1632CrossRefGoogle Scholar
  21. Williams SDP, Willis P (2006) Error analysis of weekly station coordinates in the DORIS network. J Geod 80(8–11):429–456Google Scholar
  22. Willis P, Deleflie F, Barlier F, Bar-Sever YE, Romans L (2005a) Effects of thermosphere total density perturbations on LEO orbits during severe geomagnetic conditions (Oct-Nov 2003). Adv Space Res 36(3):522–533CrossRefGoogle Scholar
  23. Willis P, Desai SD, Bertiger WI, Haines BJ, Auriol A (2005b) DORIS satellite antenna maps derived from long-term residuals time series. Adv Space Res 36(3):486–497CrossRefGoogle Scholar
  24. Willis P, Jayles C, Bar-Sever YE (2006) DORIS, from altimeric missions orbit determination to geodesy. CR Geosci 338(14–15):968–979CrossRefGoogle Scholar
  25. Willis P, Boucher C, Fagard H, Garayt B, Gobinddass ML (2010a) Contributions of the French Institut Géographique National (IGN) to the International DORIS Service. Adv Space Res 45(12):1470–1480. doi: 10.1016/j.asr.2009.09.019 CrossRefGoogle Scholar
  26. Willis P, Fagard H, Ferrage P, Lemoine FG, Noll CE, Noomen R, Otten M, Ries JC, Soudarin L, Tavernier G, Valette JJ (2010b) The International DORIS Service: toward maturity. Adv Space Res 45(12):1408–1420. doi: 10.1016/j.asr.2009.11.018 CrossRefGoogle Scholar
  27. Yaya P, Tourain C (2010) Impact of DORIS ground antennas environment on their radio signal quality. Adv Space Res 45(12):1465–1469. doi: 10.1016/j.asr.2010.01.031 CrossRefGoogle Scholar
  28. Zelensky NP, Lemoine FG, Chinn DS, Rowlands DD, Luthcke SB, Beckley D, Pavlis D, Ziebart A, Sibthorpe A, Willis P, Luceri V (2010) DORIS/SLR POD modeling improvements for Jason-1 and Jason-2. Adv Space Res 46(12):1541–1558CrossRefGoogle Scholar
  29. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM, Webb FH (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut Géographique National, Direction TechniqueSaint-MandéFrance
  2. 2.Institut de Physique du Globe de Paris, PRES Sorbonne Paris, Cité, UFR STEPParisFrance
  3. 3.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  4. 4.Institut Géographique National, LAREGMarne-la-ValléeFrance

Personalised recommendations