Scientific Rationale and Development of the Global Geodetic Observing System

  • G. BeutlerEmail author
  • R. Rummel
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)


Before addressing GGOS issues we briefly introduce the modern understanding of geodesy and we review the development of geodesy as a science. This background is required to understand the motivation behind the development the International Association of Geodesy’s Global Geodetic Observing System (GGOS).

The article then reviews the development of GGOS since the 1998 IAG Section II Symposium in Munich, which may be viewed as the GGOS date of birth. It introduces the GGOS mission and summarizes the milestones of the GGOS establishment. The current state of GGOS implementation is presented and the next steps of the GGOS deployment are discussed.


Global Position System Global Navigation Satellite System Global Navigation Satellite System Very Long Baseline Interferometry Earth Rotation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Baeyer JJ (1861) Über die Grösse und Figur der Erde – Eine Denkschrift zur Begründung einer mittel-europäischen Gradmessung. Georg Reiner Verlag, BerlinGoogle Scholar
  2. Beutler G, Brunner F, Dickey J, Feissel M, Forsberg R, Mueller II, Rummel R, Sanso F, Schwarz K-P (2002) The IAG review 2000–2001 – executive summary. International Association of Geodesy Symposia, vol 125:603–608Google Scholar
  3. Beutler G, Drewes H, Verdun A (2004) The new structure of the International Association of Geodesy (IAG) viewed from the perspective of history. J Geod 77:566–575CrossRefGoogle Scholar
  4. Beutler G, Drewes H, Verdun A (2005) The Integrated Global Geodetic Observing System (IGGOS) viewed from the perspective of history. J Geod 40:414–431CrossRefGoogle Scholar
  5. Beutler G, Moore AW, Mueller II (2009) The International global navigation satellite systems service (IGS): development and achievements. J Geod 83:297–307CrossRefGoogle Scholar
  6. Chao BF (2003) Geodesy is not just for static measurements anymore, EOS Transactions. Am Geophys Union 84(16):145CrossRefGoogle Scholar
  7. Climate Change (2007) The physical science basis, contribution of Working Group 1 to the fourth assessment report of the IPCC, Cambridge University Press, CambridgeGoogle Scholar
  8. Dick WR, Richter B (eds) (2005) IERS Annual Report 2005. International Earth Rotation and Reference Systems Service, Central Bureau, Verlag des Bundesamts für Kartographie und Geodäsie, 2007. p 175, ISBN 3-89888-838-XGoogle Scholar
  9. Drewes H, Reigber C, Plag H-P, Rothacher M, Rummel R, Beutler G (2005) IAG GGOS implementation plan, Technical report, GeoForschungsZentrumPotsdam, GermanyGoogle Scholar
  10. Drinkwater, M, Haagmans R, Muzi D, Popescu A, Floberghagen R, Kern M, Fehringer M (2006) The GOCE gravity mission: ESA’s first core explorer. ESA SP-627, ESA Publication Division, pp 1–7Google Scholar
  11. Forsberg R, Sideris M, Shum C-K (2005) The gravity field and GGOS. J Geodyn 40:387–393CrossRefGoogle Scholar
  12. Hogan J (2005) Warming debate highlights poor data. Nature 436:896CrossRefGoogle Scholar
  13. King-Hele D (1992) A tapestry of orbits. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Mueller II, Zerbini S (eds) (1989) The interdisciplinary role of Space Geodesy, Lecture Notes in Earth Sciences, 22, Springer, BerlinGoogle Scholar
  15. Pearlman MR, Degnan JJ, Bosworth JM (2002) The international laser ranging service. Adv Space Res 30(2):135–143CrossRefGoogle Scholar
  16. Plag H-P, Pearlman M (eds) (2009) Global geodetic observing system: meeting the requirements of a global society on a changing planet in 2020. Springer, BerlinGoogle Scholar
  17. Reigber C, Jochmann H, Wünsch J, Petrovic S, Schwintzer F, Barthelmes F, Neumayer KH, König R, Förste C, Balmino G, Biancale R, Lemoine JM, Loyer S, Pérosanz F (2004) Earth gravity field and seasonal variability from CHAMP. In: Reigber C, Schwintzer P, Wickert J (eds) Earth observation from CHAMP – results from three years in orbit. Springer, Berlin, pp 25–30Google Scholar
  18. Rummel R, Drewes H, Bosch W, Hornik H (eds) (2000) Towards an Integrated Global Geodetic Observing System (IGGOS). International Association of Geodesy Symposia, vol 120:1–261Google Scholar
  19. Rummel R, Drewes H, Beutler G (2002) Integrated global geodetic observing system (IGGOS): A candidate IAG project. Int Assoc Geod Symp 125:609–614Google Scholar
  20. Schlüter W, Behrend D (2007) The International VLBI Service for Geodesy and Astrometry (IVS): current capabilities and future prospects. J Geod 81(6–8):379–387CrossRefGoogle Scholar
  21. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins M (2004) GRACE measurements of mass variability in the Earth system. Science 305(5683)Google Scholar
  22. Tavernier G, Fagard H, Feissel-Vernier M, Le Bail K, Lemoine F, Noll C, Noomen R, Ries JC, Soudarin L, Valette JJ, Willis P (2006) The International DORIS Service: genesis and early achievements, in DORIS Special Issue, Willis P (ed), J Geod 80(8–11), pp 403–417Google Scholar
  23. Torge W (2001) Geodesy, 3rd edition, de Gruyter, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Astronomical InstituteUniversity of BernBernSwitzerland
  2. 2.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMünchenGermany

Personalised recommendations