Calibration of Wet Tropospheric Delays in GPS Observation Using Raman Lidar Measurements

  • P. BosserEmail author
  • C. Thom
  • O. Bock
  • J. Pelon
  • P. Willis
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 136)


Water vapor measurements from a Raman lidar developed conjointly by the IGN and the LATMOS/CNRS are used for documenting the water vapor heterogeneities and correcting GPS signal propagation delays in clear sky conditions. We use data from four 6 h-observing sessions during the VAPIC experiment (15 May–15 June 2004). The retrieval of zenith wet delays (ZWDs) from our Raman lidar is shown to agree well with radiosonde (0.6 ± 2.5 mm) and microwave radiometers (−6.6 ± 1.2 and 6.0 ± 3.8 mm) retrievals.

ZWDs estimated from GPS data present a good consistency too (−2.0 ± 2.7 mm) but they are still shown to not represent properly the fast evolutions with high frequency variations correlation about 0.12. Part of the errors is also due to multipath and antenna phase center variations. Within this framework, methodologies for integrating of zenith lidar observations into the GPS processing are described. They include also a correction for multipath and antenna phase center variation. The best results are obtained when the lidar ZWDs are used for a priori correcting the GPS phase observations: discrepancies between lidar and GPS estimates are then reduced to −1.1 ± 1.4 mm. It is shown also that mapping function derived from the lidar vertical profiles performs nearly as well as the VMF1 mapping function.


Precise Point Position Lidar Measurement Precise Point Position High Frequency Variation Numerical Weather Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Altamimi Z, Collilieux X, Legrand J, Garayt B, Boucher C (2007) ITRF2005: a new release of the International Terrestrial Reference Frame based on time series of station positions and Earth Orientation Parameters. J Geophys Res 112:B09401CrossRefGoogle Scholar
  2. Bevis M, Bussinger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. J Geophys Res 97:15787–15801CrossRefGoogle Scholar
  3. Bock O, Tarniewicz J, Thom C, Pelon J (2001a) Effect of small-scale atmospheric inhomogeneity on positioning accuracy with GPS. Geophys Res Lett 28:2289–2290CrossRefGoogle Scholar
  4. Bock O, Tarniewicz J, Thom C, Pelon J, Kasser M (2001b) Study of external path delay correction techniques for high accuracy height determination with GPS. Phys Chem Earth 26:165–171CrossRefGoogle Scholar
  5. Boehm J, Niell AE, Tregoning P, Schuh H (2006) The global mapping function (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33:L07304CrossRefGoogle Scholar
  6. Bosser P, Bock OJP, Thom C (2007) An improved mean gravity model for GPS hydrostatic delay calibration. Geosci Rem Sens Lett 4:3–7CrossRefGoogle Scholar
  7. Haefele P, Martin L, Becker M, Brockmann E, Morland J, Nyeki S, Malttzler C, Kirchner M (2004) Impact of radio water vapor measurements on troposphere and height estimates by GPS. In: Proceedings of the 17th international technical meeting of the satellite division of the Institute of NavigationGoogle Scholar
  8. Kleijer F (2004) Troposphere modeling and filtering for precise GPS leveling. PhD thesis, Delft University of TechnologyGoogle Scholar
  9. Kouba J (2008) Implementation and testing of the gridded Vienna Mapping Function 1 (VMF1). J Geodes 82:193–205CrossRefGoogle Scholar
  10. Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: insights from FES2004. Ocean Dynam 56:394–415CrossRefGoogle Scholar
  11. MacCarthy DD, Petit G (2003) IERS 2003 conventions. Technical report, IERS, Frankfurt-am-Main, GermanyGoogle Scholar
  12. Revercomb HE, Turner DD, Tobin DC, Knuteson RO, Feltz WF, Barnard J, Bösenberg J, Clough S, Cook D, Ferrare R, Goldsmith J, Gutman S, Halthore R, Lesht B, Liljegren J, Linné H, Michalsky J, Morris V, Porch W, Richardson S, Schmid B, Splitt M, van Hove T, Westwater E, Whiteman D (2003) The ARM program’s water vapor intensive observation periods. Bull Am Meteorol Soc 84:217–236CrossRefGoogle Scholar
  13. Rocken C, Sokolovskiy S, Johnson JM, Hunt D (2001) Improved mapping of tropospheric delays. J Atmos Ocean Tech 18:1205–1213CrossRefGoogle Scholar
  14. Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, in the use of artificial satellites for geodesy. Geophys Monogr 15(16):247–251CrossRefGoogle Scholar
  15. Shoji Y, Nakamura H, Iwabuchi T, Aonashi K, Seko H, Mishima K, Itagaki A, Ichikawa R, Ohtani Y (2004) Tsukaba GPS dense net campaign observation: improvement in GPS analysis of slant path delay by stacking one-way postfit phase residuals. J Meteorol Soc Jpn 82:301–314CrossRefGoogle Scholar
  16. Tesmer V, Boehm J, Heinkelmann R, Schuh H (2007) Effect of different tropospheric mapping functions on the TRF, CRF and position time-series estimated from VLBI. J Geodes 81:409–421CrossRefGoogle Scholar
  17. Ware R, Rocken C, Solheim F, Van Hove T, Alber C, Johnson J (1993) Pointed water vapor radio corrections for accurate global positioning system surveying. Geophys Res Lett 20:22635–22638CrossRefGoogle Scholar
  18. Wessel P, Smith WHF (1991) Free software helps map and display data. EOS Trans AGU 72:441CrossRefGoogle Scholar
  19. Whiteman DN, Melfi SH, Ferrare RA (1992) Raman Lidar system for the measurement of water vapor and aerosols in the Earth’s atmosphere. Appl Opt 31:3068–3082CrossRefGoogle Scholar
  20. Zumberge JF, Heflin MB, Jefferson DC, Watkins MM (1997) Precise point positioning for the efficient and robust analysis of GPS data from large networks. J Geophys Res 102:5005–5017CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • P. Bosser
    • 1
    Email author
  • C. Thom
    • 1
  • O. Bock
    • 2
    • 3
  • J. Pelon
    • 3
  • P. Willis
    • 4
    • 5
  1. 1.Institut Géographique National, LOEMISaint-MandéFrance
  2. 2.Institut Géographique National, LAREGMarne-la-ValléeFrance
  3. 3.Institut Pierre Simon Laplace, LATMOSParisFrance
  4. 4.Institut Géographique National, Direction TechniqueSaint-MandéFrance
  5. 5.Institut de Physique du Globe de ParisPRES Sorbonne Paris Cité, UFR STEPParisFrance

Personalised recommendations