Advertisement

Fuzzy Clustering and Adaptive Thresholding Based Segmentation Method for Breast Cancer Diagnosis

  • Paweł Filipczuk
  • Marek Kowal
  • Andrzej Obuchowicz
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 95)

Abstract

The paper provides a preview of some work in progress on the computer system to support breast cancer diagnosis. The approach is based on microscope images of the FNB (Fine Needle Biopsy) and assumes distinguishing malignant from benign cases. Research is focused on two different problems. The first is segmentation and extraction of morphometric parameters of nuclei present on cytological images. The second concentrates on breast cancer classification using selected features. Studies in both areas are conducted in parallel. This work is mainly devoted to the problem of image segmentation in order to obtain good quality features measurements. Correct segmentation is crucial for successful diagnosis. The paper describes hybrid segmentation algorithm based on fuzzy clustering and adaptive thresholding. The automatic system of malignancy classification was applied on a set of medical images with promising results.

Keywords

Breast Cancer Image Segmentation Segmentation Method Fuzzy Cluster Membership Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Al-Kofahi, Y., Lassoued, W., Lee, W., Roysam, B.: Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images. IEEE Trans. on Biomedcial Engineering 57(4), 841–852 (2010)CrossRefGoogle Scholar
  2. 2.
    Bezdek, D.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plennum Press, New York (1981)zbMATHGoogle Scholar
  3. 3.
    Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Chapman & Hall, Boca Raton (1993)Google Scholar
  4. 4.
    Clocksin, W.F.: Automatic segmentation of overlapping nuclei with high background variation using robust estimation and flexible contour models. In: Proc. 12th Int. Conf. Image Analysis and Processing (ICIAP 2003), pp. 682–687 (2003)Google Scholar
  5. 5.
    Cloppet, F., Boucher, A.: Segmentation of overlapping/aggregating nuclei cells in biological images. In: Proc. ICPR, pp. 1–4. IEEE, Los Alamitos (2008)Google Scholar
  6. 6.
    Filipczuk, P., Kowal, M., Marciniak, A.: Feature selection for breast cancer malignancy classification problem. J. Medical Informatics & Technologies (15), 193–199 (2010)Google Scholar
  7. 7.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, New Jersey (2001)Google Scholar
  8. 8.
    Hrebień, M., Steć, P., Obuchowicz, A., Nieczkowski, T.: Segmentation of breast cancer fine needle biopsy cytological images. Int. J. Appl. Math and Comp. Sci. 18(2), 159–170 (2008)CrossRefGoogle Scholar
  9. 9.
    Jeleń, Ł., Fevens, T., Krzyżak, A.: Classification of breast cancer malignancy using cytological images of fine needle aspiration biopsies. Int. J. Appl. Math. and Comp. Sci. 18(1), 75–83 (2008)CrossRefGoogle Scholar
  10. 10.
    Kowal, M., Korbicz, J.: Segmentation of breast cancer fine needle biopsy cytological images using fuzzy clustering. In: Kornacki, J., Raï, Z., Wierzchoï, S., Kacprzyk, J. (eds.) Advances in Machine Learning I, pp. 405–417. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Marciniak, A., Obuchowicza, A., Monczak, R., Kołodziński, M.: Cytomorphometry of Fine Needle Biopsy Material from the Breast Cancer. In: Proc. 4th Int. Conf. on Computer Recognition Systems (CORES 2005), pp. 603–609. Springer, Heidelberg (2005)Google Scholar
  12. 12.
    Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  13. 13.
    Naz, S., Majeed, H., Irshad, H.: Image Segmentation using Fuzzy Clustering: A Survey. In: Proc 6th Int. Conf. Emerging Technologies (ICET 2010), pp. 181–186 (2010)Google Scholar
  14. 14.
    Obuchowicz, A., Hrebień, M., Nieczkowski, T., Marciniak, A.: Computational intelligence techniques in image segmentation for cytopathology. In: Smolinski, T.G., Milanova, M.G., Hassanien, A.-E. (eds.) Computational Intelligence in Biomedicine and Bioinformatics. Studies in Computational Intelligence, vol. 151, pp. 169–199. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Otsu, N.: A Threshold Selection Method from Gray-level Histograms. IEEE Trans. Sys. Man. and Cyber. (9), 62–66 (1979)Google Scholar
  16. 16.
    Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quantitative performance evaluation. J. Electronic Imaging 13(1), 146–165 (2003)CrossRefGoogle Scholar
  17. 17.
    Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall, New Jersey (2002)Google Scholar
  18. 18.
    Suri, J.S., Setarhdan, K., Singh, S.: Advanced Algorithmic Approaches to Medical Image Segmentation. Springer, London (2002)CrossRefGoogle Scholar
  19. 19.
    Underwood, J.C.E.: Introduction to biopsy interpretation and surgical pathology. Springer, London (1987)Google Scholar
  20. 20.
    Wolberg, W.H., Street, W.N., Mangasarian: Breast cytology diagnosis via digital image analysis. Analytical and Quantitative Cytology and Histology 15, 396–404 (1993)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Paweł Filipczuk
    • 1
  • Marek Kowal
    • 1
  • Andrzej Obuchowicz
    • 1
  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraPoland

Personalised recommendations