Analysis of Dispersion of Isopotential Areas Values in EEG Maps Sequences

  • Hanna Goszczynska
  • Marek Doros
  • Leszek Kowalczyk
  • Paweł Hoser
  • Krystyna Kolebska
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 95)


The aim of the study was to develop the method for objective evaluation of differences in alternation variability of isopotential areas in the EEG maps sequences for activity episode. The method was based on the analysis of EEG map images histograms and concerns the evaluation of the isopotential areas changes. The principle of the present method is analysis of the ratio of extreme isopotential areas and of the dispersion of values of extreme isopotential areas. The method was tested on sequences of amplitude maps for 17 subjects with seizure episodes with different characteristics divided into two groups. Visual evaluation of obtained results confirms that ratio of extreme isopotential areas and coefficients of the symmetry and elongation of extreme isopotential areas values dispersions may be useful for describing the variability of EEG maps. Influence of the potential range scale of EEG maps on the quantitative estimation of the isopotential areas variability was also analyzed.


Time Series Scatter Plot Seizure Activity Visual Evaluation Dispersion Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duffy, F.H.: Topographic Mapping of Brain Electric Activity. Butterworth, Boston (1986)Google Scholar
  2. 2.
    Duffy, F.H., Bartels, P.H., Burchfiel, J.L.: Significance probability mapping: an aid in the topographic analysis of brain electrical activity. Electroencephalogr. Clin. Neurophysiol. 51(5), 455–462 (1981)CrossRefGoogle Scholar
  3. 3.
    Goszczynska, H., Doros, M., Kowalczyk, L., Kolebska, K., Dec, S., Zalewska, E., Miszczak, J.: Relationships between Isopotential Areas in EEG Maps before, during and after the Seizure Activity. In: Pietka, E., Kawa, J. (eds.) Information Technologies in Biomedicine, pp. 315–324. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Goszczyńska, H., Kowalczyk, L., Doros, M., Kolebska, K., Jóźwik, A., Dec, S., Zalewska, E., Miszczak, J.: Analysis of variability of isopotential areas features in sequences of EEG maps. In: Kurzynski, M., Wozniak, M. (eds.) Computer Recognition Systems 3. AISC, vol. 57, pp. 407–414. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Kowalczyk L.: Analysis of brain bioelectric activity dynamics under stimulation utilising signal simiarity evaluation methods (in Polish). PhD Thesis, Institute of Biocybernetics and Biomedical Engineering Polish Academy of Sciences, Warsaw (2006)Google Scholar
  6. 6.
    Kowalczyk, L., Dec, S., Zalewska, E., Miszczak, J.: Progress on a Study of Spontaneous EEG Activity in Records of Epilepsy Patients with Interictal Discharges and Epileptiform Discharges In Healthy Subjects. In: 7th European Congress on Epileptology, pp. 47 (s3):48. Helsinki, Epilepsia (2006)Google Scholar
  7. 7.
    Kowalczyk, L., Zalewska, E., Miszczak, J., Dec, S.: New criteria for the differentiation between spontaneous EEG in records with seizure activity in healthy subjects and epileptic patients. In: Proc. of 53 International Congress of Aviation and Space Medicine, Warsaw, p. 26 (2005)Google Scholar
  8. 8.
    Lehmann, D., Pascual-Marqui, R.D., Michel, C.: EEG_microstates. Scholarpedia 4(3), 7632 (2009), CrossRefGoogle Scholar
  9. 9.
    Lehmann, D.: From mapping to the analysis and interpretation of EEG/EP maps. In: Maurer, K. (ed.) Topographic Brain Mapping of EEG and evoked potentials, pp. 53–75. Springer, Heidelberg (1989)Google Scholar
  10. 10.
    Li, L., Yao, D.: A new method of spatio-temporal topographic mapping by correlation coefficient of k-means cluster. Brain Topography 19(4), 161–176 (2007)CrossRefGoogle Scholar
  11. 11.
    Lopes da Silva, F.: Computer-Assisted EEG Diagnosis: Pattern Recognition and Brain Mapping. In: Niedermeyer, E., Lopes da Silva, F. (eds.) Electroencephalography, Basic Principles, Clinical Applications, and Related Fields, 5th edn., pp. 1252–1256. Lippincott Williams & Wilkins, Philadelphia (2005)Google Scholar
  12. 12.
    Morihisa, J.M., Duffy, F.H., Wyatt, R.J.: Brain electrical activity mapping (BEAM) in schizophrenic patients. Arch. Gen. Psychiatry 40(7), 719–728 (1983)Google Scholar
  13. 13.
    Murray, M.M., Brunet, D., Michel, C.M.: Topographic ERP Analyses: A Step-by-Step Tutorial Review. Brain Topogr. 20, 249–264 (2008)CrossRefGoogle Scholar
  14. 14.
    Tatsuno, J., Ashida, H., Takao, A.: Objective evaluation of differences in patterns of EEG topographical maps by Mahalanobis distance. Electroencephalography and Clinical Neurophysiology 69(3), 287–290 (1988)CrossRefGoogle Scholar
  15. 15.
    Wackerman, J., Lehmann, D., Michel, C.M., Strik, W.K.: Adaptive segmentation of spontaneous EEG map series into spatially defined microstates. Int. J. Psychophysiol. 14, 269–283 (1993)CrossRefGoogle Scholar
  16. 16.
    Walerjan, P.: First derivation of EEG amplitude - new parameter in EEG mapping (in Polish). Epileptologia 8(1), 1–88 (2000)Google Scholar
  17. 17.
    Golenia, B., Kosiński, W., Weigl, M.: An Evolutionary Method for Designing Decision Support System. In: Kłopotek, M.A., Przepiórkowski, A., Wierzchoń, S.T., Trojanowski, K. (eds.) Recent Advances in Intelligent Information Systems, pp. 275–288. Academic Publishing House, EXIT, Warsaw (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hanna Goszczynska
    • 1
  • Marek Doros
    • 1
  • Leszek Kowalczyk
    • 1
  • Paweł Hoser
    • 1
  • Krystyna Kolebska
    • 1
  1. 1.M. Nałȩcz Institute of Biocybernetics and Biomedical Engineering PASWarsawPoland

Personalised recommendations