Fingerprint Orientation Field Enhancement

  • Lukasz Wieclaw
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 95)


This paper presents a new method to enhance the fingerprint orientation image. Orientation, as a global feature of fingerprint, is very important to image preprocessing methods used in automatic fingerprint identification systems (AFIS). The most popular, gradient-based method is very sensitive to noise (image quality). Proposed algorithmis an application of gradient-basedmethod combined with more resistant to noise pixel-alignment-basedmethod. Experimental results show that the proposed method is robust to noise and still maintaining accurate values in highcurvature areas.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jain, A.K., Bolle, R., Pankanti, S.: Biometrics: Personal Identification in Networked Society. Kluwer, New York (1999)Google Scholar
  2. 2.
    Hong, L., Jain, A.K., Wan, Y.: Fingerprint Image Enhancement: Algorithm and Performance Evaluation. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(8), 777–789 (1998)CrossRefGoogle Scholar
  3. 3.
    Chikkerur, S., Cartwright, A.N., Govindaraju, V.: Fingerprint enhancement using STFT analysis. Pattern Recogn. 40(1), 198–211 (2007)CrossRefzbMATHGoogle Scholar
  4. 4.
    Liu, M., Jiang, X., Kot, A.C.: Fingerprint reference-point detection. EURASIP J. Appl. Signal Process., 498–509 (2005)Google Scholar
  5. 5.
    Bazen, A.M., Gerez, S.H.: Systematic Methods for the Computation of the Directional Fields and Singular Points of Fingerprints. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 905–919 (2002)CrossRefGoogle Scholar
  6. 6.
    Wrobel, K., Doroz, R.: New Method For Finding a Reference Point in Fingerprint Images With the Use Of The IPAN99 Algorithm. Journal of Medical Informatics & Technologies 13, 59–64 (2009)Google Scholar
  7. 7.
    Hong, L., Jain, A.K., Prabhakar, S.: A Multichannel Approach to Fingerprint Classification. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 348–359 (1999)CrossRefGoogle Scholar
  8. 8.
    Costa, S.M., Fernandez, F.J., Oliveira, J.M.: A New Paradigm on Fingerprint Classification using Directional Image. In: SIBGRAPI, p. 405 (2002)Google Scholar
  9. 9.
    Jain, A.K., Karu, K.: Fingerprint classification. Pattern Recognition 29(3), 38–44 (1996)Google Scholar
  10. 10.
    Halici, U., Ongun, G.: Fingerprint classification through self-organizing feature maps modified to treat uncertainties. Proc. of the IEEE 84(10), 1497–1512 (1996)CrossRefGoogle Scholar
  11. 11.
    Hong, L., Jain, A.K., Pankanti, S., Prabhakar, S.: Filterbank-based fingerprint matching. IEEE Trans. Image Processing 9(5), 846–859 (2000)CrossRefGoogle Scholar
  12. 12.
    Kass, M., Witkin, A.: Analyzing Orientated Pattern. Computer Vision, Graphics and Image Processing 37, 362–397 (1987)CrossRefGoogle Scholar
  13. 13.
    Gu, J., Zhou, J.: Modeling orientation fields of fingerprints with rational complex functions. Pattern Recognition 37(2), 389–391 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Li, J., Wang, H., Yau, W.: Nonlinear Phase Portrait Modeling of Fingerprint Orientation. In: IEEE Proc. Control, Automation, Robotics and Vision Conf., vol. 2, pp. 1262–1267 (2004)Google Scholar
  15. 15.
    Porwik, P., Wieclaw, L.: A new approach to reference point location in fingerprint recognition. IEICE Int. Journal Electronics Express 1(18), 575–581 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Lukasz Wieclaw
    • 1
  1. 1.Institute of Computer ScienceUniversity of SilesiaSosnowiecPoland

Personalised recommendations