Advertisement

LAMDA Methodology Applied to Image Vector Quantization

  • E. Guzmán
  • J. G. Zambrano
  • I. García
  • Oleksiy Pogrebnyak
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 95)

Abstract

In this paper we present a novel approach to image vector quantization (VQ) based on Learning Algorithm for Multivariate Data Analysis (LAMDA methodology). The proposed algorithm, named VQ-LAMDA, employs a codebook generated by LBG algorithm, which must be normalized to obtain a new codebook representation, named LAMDA-codebook. The classification phase of the LAMDA methodology uses the fuzzy binomial distribution to determine marginal adequacy degrees between input vectors and LAMDA-codebook. Then, to obtain global adequacy degrees, are used the operators min-max and product and a linear convex function. Finally, using the Maximum Adequacy rule are calculate a set of indices of the codewords, to which every input vector belongs. The computer simulation results demonstrate that the proposed algorithm provides better performance than other VQ methods based on the LGB algorithm, at the peak signal-to-noise ratio (PSNR) parameter.

Keywords

Input Vector Codebook Size Index Vector Quantization Codebook Generation Vector Quantization Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguilar-Martin, J., Estruch, R.S., Waissman, J.: Knowledge-based Signal Analysis and Case-based Condition Monitoring of a Machine Tool. In: Joint 9th IFSA World Congress and 20th NAFIPS International Conference Proceedings, vol. 1, pp. 286–291 (2001)Google Scholar
  2. 2.
    Aguilar-Martin, J., Agell, N., Sánchez, M., Prats, F.: Analysis of Tensions in a Population Based on the Adequacy Concept. In: Escrig, M.T., Toledo, F.J., Golobardes, E. (eds.) CCIA 2002. LNCS (LNAI), vol. 2504, pp. 17–28. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Amerijckx, C., Legat, J.-D., Verleysen, M.: Image Compression Using Self-Organizing Map. Systems Analysis Modelling Simulation 43(11), 1529–1543 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Jean-Charles, A., Doncescu, A., Aguilar-Martin J.: A Fuzzy Clustering Approach for Supervision of Biological Processes by Image Processing. In: EUSFLAT, European Society for Fuzzy Logic and Technology, pp. 1057–1063 (2005)Google Scholar
  5. 5.
    Chan, M., Aguilar-Martin, J., Piera, N., Celsis, P., Vergnes, J.: Classification techniques for feature extraction in low resolution to topographic evaluative images: Application to cerebral blood flow estimation. In: 12th Conf. GRESTI. Groupe d’Etudes du Traitement du Signal et des Images (1989)Google Scholar
  6. 6.
    Chang-Qian, C., Soo-Ngee, K., Sivaprakasapillai, P.: A modified generalized Lloyd algorithm for VQ codebook design. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1996, vol. 1, pp. 542–545 (1996)Google Scholar
  7. 7.
    Gersho, A., Gray, R.M.: Vector quantization and signal compression. Kluwer Academic Publishers, Massachusetts (1992)zbMATHGoogle Scholar
  8. 8.
    Gray, R.M.: Vector Quantization. IEEE ASSP Magazine 1, 4–9 (1984)CrossRefGoogle Scholar
  9. 9.
    Guzmán, E., Pogrebnyak, O., Sánchez, L., Yáñez-Márquez, C.: A fast search algorithm for vector quantization based on associative memories. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 487–495. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Guzmán, E., Pogrebnyak, O., Yáñez, C., Manrique, P.: Vector Quantization Algorithm based on Associative Memories. In: Aguirre, A.H., Borja, R.M., Garciá, C.A.R. (eds.) MICAI 2009. LNCS, vol. 5845, pp. 324–336. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Hernández, H.R.: Supervision et diagnostic des procédés de production d’eau potable. Ph.D. dissertation. l’Institut National des Sciences Appliquées de Toulouse, France (2006)Google Scholar
  12. 12.
    Isaza, C.V.: Diagnostic par Techniques d’Apprentissage Floues: Conception d’une Methode de Validation Et d’Optimisation des Partitions. Ph.D. dissertation. l’Université de Toulouse, France (2007)Google Scholar
  13. 13.
    Kempowsky, T.: Surveillance de Procedes a Base de Methodes de Classification: Conception d’un Outil d’aide Pour la Detection et le Diagnostic des Defaillances. Ph.D. dissertation. l’Institut National des Sciences Appliquées de Toulouse, France (2004)Google Scholar
  14. 14.
    Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Kohonen, T.: Automatic formation of topological maps of patterns in a self-organizing system. In: Oja, E., Simula, O. (eds.) Proc. 2SCIA, Scand. Conf. on Image Analysis, pp. 214–220 (1981)Google Scholar
  16. 16.
    Kohonen, T.: Self-organizing formation of topologically correct feature maps. Biological Cybernetics 43(1), 59–69 (1982)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Linde, Y., Buzo, A., Gray, R.: An Algorithm for Vector Quantizer Design. IEEE Transactions on Communications 28(1), 84–95 (1980)CrossRefGoogle Scholar
  18. 18.
    Mora, J.J.: Localización de fallas en sistemas de distribución de energía eléctrica usando métodos basados en el modelo y métodos basados en el conocimiento. Ph.D. dissertation. Universitat de Girona, Catalua-Espaia (2006)Google Scholar
  19. 19.
    Piera, N., Desroches, P., Aguilar-Martin, J.: LAMDA: An Incremental Conceptual Clustering Method. LAAS. Laboratoire d’Automatique et d’Analyse des Systems, Report No. 89420, pp. 1–21 (1989)Google Scholar
  20. 20.
    Piera-carreté, N., Desroches, P., Aguilar-Martin, J.: Variation points in pattern recognition. Pattern Recognition Letters 11, 519–524 (1990)CrossRefGoogle Scholar
  21. 21.
    Piera, N., Aguilar-Martin, J.: Controlling Selectivity in Nonstandard Pattern Recognition Algorithms. IEEE Trans. on Systems, Man and Cybernetics 21(1), 71–82 (1991)CrossRefzbMATHGoogle Scholar
  22. 22.
    Waissman, J., Ben-Youssef, C., Vázquez, G.: Fuzzy Automata Identification Based on Knowledge Discovery in Datasets for Supervision of a WWT Process. In: 3rd Int. Conf. Sciences of Electronic Technologies of Information and Telecommunications. SETIT (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • E. Guzmán
    • 1
  • J. G. Zambrano
    • 1
  • I. García
    • 1
  • Oleksiy Pogrebnyak
    • 2
  1. 1.Universidad Tecnológica de la MixtecaHuajuapan de LeónMéxico
  2. 2.Centro de Investigación en Computación del IPNCd. de México

Personalised recommendations