Gesture Data Modeling and Classification Based on Critical Points Approximation

  • Michał Cholewa
  • Przemysław Głomb
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 95)


Human-Computer Interaction (HCI) using natural gestures is one of the promising developments in User Interface technology. One of key issues in its design is reliable modeling and classification of gesture data. In this article, we present a method for abstraction of gesture movement information, by reducing it to a sequence of approximated critical points (locations and types). The sequence of such critical points has good feature extraction properties. We present the method, results of classification, and discussion of the properties of the representation based on example gesture dataset recorded with motion capture equpiment.


Motion Capture Shape Description Sensor Reading Motion Capture Data Dominant Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bengtsson, A., Eklundh, J.-O.: IEEE Transactions on Pattern Analysis and Machine Intelligence 13(1), 85–93 (1991)CrossRefGoogle Scholar
  2. 2.
    Freeman, H.: Pattern Recognition 10(3), 159–166 (1978)CrossRefzbMATHGoogle Scholar
  3. 3.
    Garcia, J.A., Fdez-Valdivia, J., Molina, R.: Signal Processing 43(1), 39–53 (1995)CrossRefzbMATHGoogle Scholar
  4. 4.
    Gavrikov, M.B., Misyurev, A.V., Pestryakova, N.V., Slavin, O.A.: Automation and Remote Control 67(2), 278–292 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    GÅćomb, P., Romaszewski, M., Opozda, P., Sochan, A.: Choosing and modeling gesture database for natural user interface (2011) (submitted)Google Scholar
  6. 6.
    Lee, H.K., Kim, J.H.: IEEE Transactions on Pattern Analysis and Machine Intelligence 21(10), 961–973 (1999)CrossRefGoogle Scholar
  7. 7.
    Li, Z.: The Cartographic Journal 32(2), 121–125 (1995)Google Scholar
  8. 8.
    McNeill, D.: Hand and Mind: What Gestures Reveal about Thought. The University of Chicago Press, Chicago (1992)Google Scholar
  9. 9.
    Mitra, S., Acharya, T.: IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 37(3), 311–324 (2007)CrossRefGoogle Scholar
  10. 10.
    Pikaz, A., Dinstein, I.: IEEE Transactions on Pattern Analysis and Machine Intelligence 16(8), 808–813 (2002)CrossRefGoogle Scholar
  11. 11.
    Quek, F., McNeill, D., Bryll, R., Duncan, S., Ma, X.-F., Kirbas, C., McCullough, K.E., Ansari, R.: ACM Transactions on Computer-Human Interaction 9, 171–193 (2002)CrossRefGoogle Scholar
  12. 12.
    Romaszewski, M., GÅćomb, P.: The effect of multiple training sequences on HMM classification of motion capture gesture data accepted for 7th International Conference on Computer Recognition Systems CORES 2011 (2011)Google Scholar
  13. 13.
    Taylor, C.R., von Konsky, B.R., Kirtley, C.: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 5, pp. 2490–2493 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michał Cholewa
    • 1
  • Przemysław Głomb
    • 1
  1. 1.Institute of Theoretical and Applied Informatics of PASGliwicePoland

Personalised recommendations