Interactive Exploration of Image Collections

  • Gerald Schaefer
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 95)


With image collections, both private and commercial, ever growing, efficient and effective tools for managing these repositories are becoming increasingly important. Content-based approaches, which are based on the principle of image feature extraction and similarity calulation based on these features, seem necessary as most images are unannotated. However, typical content-based retrieval systems have shown only limited usefulness. In this paper,we present interactive image database browsing systems as an alternative to retrieval approaches. Exploiting content-based concepts, image collections can be visualised so that visually similar images are located close in the visualisation space. Once an image collection has been displayed, the user is given the possibility of interactively exploring it further through various browsing operations. After introducing basic approaches to visualising and browsing image collections, we then focus on some of the systems that we have developed in our lab for this purpose. In particular, we look in detail at the Hue Sphere Image Browser and Honeycomb Image Browser systems, both of which provide hierarchical browsing approaches that give access to large image collections in an intuitive yet efficient manner.


Image Retrieval Image Database Image Collection Local Linear Embedding Interactive Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartolini, I., Ciaccia, P., Patella, M.: Adaptively browsing image databases with PIBE. Multimedia Tools and Applications 31(3), 269–286 (2006)CrossRefGoogle Scholar
  2. 2.
    Chen, C., Gagaudakis, G., Rosin, P.: Similarity-Based Image Browsing. In: Int. Conference on Intelligent Information Processing, pp. 206–213 (2000)Google Scholar
  3. 3.
    Chen, J.Y., Bouman, C.A., Dalton, J.C.: Hierarchical Browsing and Search of large Image Databases. IEEE Trans. Image Processing 9(3), 442–455 (2000)CrossRefGoogle Scholar
  4. 4.
    Chen, Y., Butz, A.: PhotoSim: Tightly integrating image analysis into a photo browsing UI. In: Int. Symposium on Smart Graphics, pp. 224–231 (2008)Google Scholar
  5. 5.
    Dontcheva, M., Agrawala, M., Cohen, M.: Metadata visualization for image browsing. In: 18th Annual ACM Symposium on User Interface Software and Technology (2005)Google Scholar
  6. 6.
    Gomi, A., Miyazaki, R., Itoh, T., Li, J.: CAT: A hierarchical image browser using a rectangle packing technique. In: 12th Int. Conference on Information Visualization, pp. 82–87 (2008)Google Scholar
  7. 7.
    Heesch, D., Rüger, S.: NNk networks for content-based image retrieval. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS, vol. 2997, pp. 253–266. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Keller, I., Meiers, T., Ellerbrock, T., Sikora, T.: Image browsing with PCA-assisted user-interaction. In: IEEE Workshop on Content-Based Access of Image and Video Libraries, pp. 102–108 (2001)Google Scholar
  9. 9.
    Krischnamachari, S., Abdel-Mottaleb, M.: Image browsing using hierarchical clustering. In: IEEE Symposium on Computers and Communications, pp. 301–307 (1999)Google Scholar
  10. 10.
    Moghaddam, B., Tian, Q., Lesh, N., Shen, C., Huang, T.S.: Visualization and user-modeling for browsing personal photo libraries. Int. Journal of Computer Vision 56(1-2), 109–130 (2004)CrossRefGoogle Scholar
  11. 11.
    Moving Picture Experts Group. Description of core experiments for MPEG-7 color/texture descriptors. Technical Report ISO/IEC JTC1/SC29/WG11/ N2929 (1999)Google Scholar
  12. 12.
    Nguyen, G.P., Worring, M.: Interactive access to large image collections using similarity-based visualization. Journal of Visual Languages and Computing 19(2), 203–224 (2008)CrossRefGoogle Scholar
  13. 13.
    Osman, T., Thakker, D., Schaefer, G., Lakin, P.: An integrative semantic framework for image annotation and retrieval. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 366–373 (2007)Google Scholar
  14. 14.
    Plant, W., Schaefer, G.: Evaluation and benchmarking of image database navigation tools. In: Int. Conference on Image Processing, Computer Vision and Pattern Recognition, vol. 1, pp. 248–254 (2009)Google Scholar
  15. 15.
    Plant, W., Schaefer, G.: Navigation and browsing of image databases. In: Int. Conference on Soft Computing and Pattern Recognition, pp. 750–755 (2009)Google Scholar
  16. 16.
    Plant, W., Schaefer, G.: Visualising image databases. In: IEEE Int. Workshop on Multimedia Signal Processing, pp. 1–6 (2009)Google Scholar
  17. 17.
    Plant, W., Schaefer, G.: Image retrieval on the honeycomb image browser. In: 17th IEEE Int. Conference on Image Processing, pp. 3161–3164 (2010)Google Scholar
  18. 18.
    Plant, W., Schaefer, G.: Visualisation and browsing of image databases. In: Multimedia Analysis, Processing and Communications. SCI, vol. 346, Springer, Heidelberg (2010)Google Scholar
  19. 19.
    Platt, J., Czerwinski, M., Field, B.: PhotoTOC: automatic clustering for browsing personal photographs. Technical report, Microsoft Research (2002)Google Scholar
  20. 20.
    Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: Evaluating a visualisation of image similarity as a tool for image browsing. In: IEEE Symposium on Information Visualization, pp. 36–43 (1999)Google Scholar
  21. 21.
    Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: A comparison of measures for visualising image similarity. In: The Challenge of Image Retrieval (2000)Google Scholar
  22. 22.
    Rubner, Y., Guibas, L., Tomasi, C.: The earth mover’s distance, multi-dimensional scaling, and color-based image retrieval. In: Image Understanding Workshop, pp. 661–668 (1997)Google Scholar
  23. 23.
    Schaefer, G.: A next generation browsing environment for large image repositories. Multimedia Tools and Applications 47(1), 105–120 (2010)CrossRefGoogle Scholar
  24. 24.
    Schaefer, G., Ruszala, S.: Image database navigation: A globe-al approach. In: Bebis, G., Boyle, R., Koracin, D., Parvin, B. (eds.) ISVC 2005. LNCS, vol. 3804, pp. 279–286. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Schaefer, G., Ruszala, S.: Hierarchical image database navigation on a hue sphere. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Remagnino, P., Nefian, A., Meenakshisundaram, G., Pascucci, V., Zara, J., Molineros, J., Theisel, H., Malzbender, T. (eds.) ISVC 2006. LNCS, vol. 4292, pp. 814–823. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  26. 26.
    Schaefer, G., Stuttard, M.: An on-line tool for browsing large image repositories. In: Int. Conference on Information Retrieval and Knowledge Management, pp. 102–106 (2010)Google Scholar
  27. 27.
    Sheridan, P., Hintz, T., Alexander, D.: Pseudo-invariant image transformations on a hexagonal lattice. Image and Vision Computing 18, 907–917 (2000)CrossRefGoogle Scholar
  28. 28.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Analysis and Machine Intelligence 22(12), 1249–1380 (2000)CrossRefGoogle Scholar
  29. 29.
    Swain, M.J., Ballard, D.H.: Color indexing. Int. Journal of Computer Vision 7(11), 11–32 (1991)CrossRefGoogle Scholar
  30. 30.
    Worring, M., de Rooij, O., van Rijn, T.: Browsing visual collections using graphs. In: Int. Workshop on Workshop on Multimedia Information Retrieval, pp. 307–312 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gerald Schaefer
    • 1
  1. 1.Department of Computer ScienceLoughborough UniversityLoughboroughU.K.

Personalised recommendations